
Digital Signal Processing
and Applications with the

TMS320C6713 DSK

D. Richard Brown III
Associate Professor

Worcester Polytechnic Institute
Electrical and Computer Engineering Department

drb@ece.wpi.edu

October 15-16, 2007

Day 1

Page 2 of 63

Workshop Goals
 Become familiar with

 DSP basics
 TMS320C6713 floating point DSP architecture
 TMS320C6713 DSP starter kit (DSK)
 Code composer studio integrated development environment (IDE)
 Matlab design and analysis tools

 Learn how to program the C6713
 Writing and compiling code
 Fixing errors
 Downloading code to the target and executing
 Debugging

 Write and run useful programs on the C6713 DSK
 Learn about DSP applications
 Learn where to find help

Page 3 of 63

Take Home Items
 “Digital Signal Processing and Applications with the

C6713 and C6416 DSK” by Rulph Chassaing, 2005
 Texas Instruments TMS320C6713 DSK including

 DSK board with TMS320C6713 DSP chip
 USB cable
 Power supply
 CD with Code composer studio IDE (v3.1) and electronic

documentation
 DSK technical reference manual
 DSK quick start installation guide
 Matlab/Simulink trial CD and other promotional material

Page 4 of 63

C6713 DSK Overview
 225 MHz TMS320C6713 floating point DSP
 AIC23 stereo codec (ADC and DAC)

 Ideal for audio applications
 8-96 kHz sample rates

 Memory
 16 MB dynamic RAM
 512 kB nonvolatile FLASH memory

 General purpose I/O
 4 LEDs
 4 DIP switches

 USB interface to PC

Page 5 of 63

C6713 DSK
Functional Block Diagram

Page 6 of 63

C6713 DSK Physical Layout

Page 7 of 63

Is my DSK working?
DSK Power On Self Test
 Power up DSK and watch LEDs
 Power On Self Test (POST) program stored in

FLASH memory automatically executes
 POST takes 10-15 seconds to complete
 All DSK subsystems are automatically tested
 During POST, a 1kHz sinusoid is output from the

AIC23 codec for 1 second
 Listen with headphones or watch on oscilloscope

 If POST is successful, all four LEDs blink 3 times
and then remain on

Page 8 of 63

Is my DSK working?
DSK Diagnostic Utility
 Install CCS 3.1

 Directions in “Quick Start Installation Guide”
 Diagnostic utility automatically installed

press
start

ok!

Page 9 of 63

Code Composer Studio IDE
 Connect power supply to DSK
 Wait for POST to complete
 Connect USB cable from PC to DSK

 If this is the first time connecting the DSK, you may be
asked to install a driver. The driver is on the Code
Composer Studio CD and will automatically be found
by Windows if the CD is in the drive.

 Launch Code Composer Studio C6713 DSK
 CCS will load and wait for your input

Page 10 of 63

Code Composer Studio IDE

Page 11 of 63

CCS Integrated Development
Environment

Useful TI documentation (available online or on your hard drive):
SPRU509F.PDF CCS v3.1 IDE Getting Started Guide
C6713DSK.HLP C6713 DSK specific help material

Note that your DSK includes CCS v3.1. Updates and patches are
available after registering CCS.

Page 12 of 63

Connecting to the C6713 DSK

Page 13 of 63

Opening an Existing Project
Project->Open

Select a .PJT file and press “Open”. Chassaing
example projects should be in
c:\CCStudio_v3.1\myprojects\
Other example projects for the C6713 can be found in
c:\CCStudio_v3.1\examples\dsk6713

Page 14 of 63

Compiling/Building a Project

Project->Build (F7)

Page 15 of 63

File-> Load Program (ctrl+L)

Select the .out file in the project\Debug directory. Program is sent to DSK.
Debug->Run (F5 or the Run button)

Loading and Running a Project
on the C6713 DSK

Page 16 of 63

Halting a Running Program on
the C6713 DSK

Debug->Halt (shift+F5 or the Halt button).

Page 17 of 63

Chassaing textbook examples:
Fixing the search path

Add C:\CCStudio_v3.1\C6000\dsk6713\include to the search path

Project ->
Build Options ->
[Compiler tab] ->
[Preprocessor category]

Page 18 of 63

Chassaing textbook examples:
Fixing the mem model

Change the memory model to “data=far”

Project ->
Build Options ->
[Compiler tab] ->
[Advanced category]

Page 19 of 63

Things to Try
 Open Sin8_LED project and fix the search path and

the memory model (see previous pages). Then
build, load, and run it.
 Press DIP switch 0. You should see LED 0 light up and a

1kHz sinusoid should appear on the left channel of the
codec. This is a good test to see if the DSK is working.

 Make an error in the source code Sin8_LED.c and
build the project to see what happens.

 Change the amplitude of the sinusoid (gain
variable), rebuild, reload, and see what happens.

 Modify the code to generate a 500Hz sinusoid.
 Open, build, and load other projects in “myprojects”

Page 20 of 63

Creating a New Project (1 of 5)
1. Create new project

Project->New

Page 21 of 63

Creating a New Project (2 of 5)

2. Write your C code:
File->New->Source File

3. Save it in your project directory (make sure
it has a .c extension):
File->Save

4. Add your C code to the project:
Project->Add Files to Project

Page 22 of 63

Creating a new project (3 of 5)
5. Add required support files to project

Project->Add Files to Project
a) myprojects\support\c6713dsk.cmd

[linker command file – this or another cmd file is required]
b) c6000\cgtools\lib\rts6700.lib

[run-time support library functions - required]
6. Add optional support files to project, e.g.

Project->Add Files to Project
a) myprojects\support\vectors_poll.asm or vectors_intr.asm

[used to set up interrupt vectors]
b) c6000\dsk6713\lib\dsk6713bsl.lib

[DSK board support library functions – useful for interfacing to
the codec, DIP switches, and LEDs]

c) c6000\bios\lib\csl6713.lib
[chip support library functions]

Page 23 of 63

Creating a New Project (4 of 5)
7. Set up the build options for

C6713:
Project -> Build Options
(compiler tab)

o Make sure target version is
C671x

o Also make sure Opt(imization)
Level is “none” - this will help
with debugging

Page 24 of 63

Creating a New Project (5 of 5)
8. Scan all file dependencies to automatically bring all

header files and includes into the project:
Project -> Scan all file dependencies

9. Build the project:
Project -> Build

10. If successful, load the .out file to the DSK:
File -> Load Program
Select the Debug directory. Select the .out file.

11. Run it:
Debug -> Run or F5 or the run button.

Page 25 of 63

Optional:
Suppress linker warnings

Project->Build Options
(linker tab)

Uncheck “warn about
output sections” (or put
in values for stack and
heap in the Basic
category)

Page 26 of 63

Tip: Problems finding files
during linking

Problem is caused by a bad path for
the include libraries in the linker
options (Project -> Build Options ->
Linker tab)

A fix for this is to remove rts6700.lib,
DSK6713bsl.lib, and csl6713.lib from
the linker options and add these files
manually (Project -> Add files to
Project…)

Page 27 of 63

A Simple Program to Try:
“helloworld”

// helloworld.c
// D. Richard Brown III
// 9-Oct-2006

#include <stdio.h>

void main()
{

printf("Hello world.\n");

}

Page 28 of 63

More Interesting Programs:
Interfacing with the Real World

analog
input

ADC DSP DAC analog
output

data code
TMS320C6713 DSK:
digital inputs = 4 DIP switches
digital outputs = 4 LEDs
ADC and DAC = AIC23 codec

digital
inputs

digital
outputs

Page 29 of 63

Interfacing with the
DIP Switches and LEDs
LED and DIP switch interface functions are provided in
dsk6713bsl.lib.

Initialize DIP/LEDs with
DSK6713_DIP_init() and/or DSK6713_LED_init()

Read state of DIP switches with
DSK6713_DIP_get(n)

Change state of LEDs with
DSK6713_LED_on(n) or
DSK6713_LED_off(n) or
DSK6713_LED_toggle(n)

where n=0, 1, 2, or 3.

Documentation is available in
C:\CCStudio_v3.1\docs\hlp\c6713dsk.hlp

Page 30 of 63

Interfacing with the AIC23
codec: C6x Interrupt Basics
 Interrupt sources must be mapped to interrupt

events
 16 “interrupt sources” (timers, serial ports, …)
 12 “interrupt events” (INT4 to INT15)

 Interrupt events have associated “interrupt vectors”.
An “interrupt vector” is a special pointer to the start
of the “interrupt service routine” (ISR).

 Interrupt vectors must be set up in your code
(usually in the file “vectors.asm”).

 You are also responsible for writing the ISR.

Page 31 of 63

Setting up an interface with the
AIC23 Codec (step 1 of 3)

We can write the ISR first:

Remarks:
• MCBSP_read() requests samples from the codec’s ADC
• MCBSP_write() sends samples to the codec’s DAC
• This ISR simply reads in samples and then sends them back out.

Page 32 of 63

// we can use the union construct in C to have
// the same memory referenced by two different variables
union {Uint32 combo; short channel[2];} temp;

// the McBSP functions require that we
// read/write data to/from the Uint32 variable
temp.combo = MCBSP_read(DSK6713_AIC23_DATAHANDLE);
MCBSP_write(DSK6713_AIC23_DATAHANDLE, temp.combo);

// but if we want to access the left/right channels individually
// we can do this through the short variables
Leftchannel = temp.channel[1];
Rightchannel = temp.channel[0];

Codec data format and how to
separating the left/right channels

temp.channel[0] (short) temp.channel[1] (short) temp.combo (Uint32)

Page 33 of 63

Setting up an interface with the
AIC23 Codec (step 2 of 3)

• Now we can set up the interrupt vector to point to the ISR.
• In this example, our ISR is called “serialPortRcvISR”.
• We will link the codec interrupt event to INT15.
• Here is the appropriate code in the vectors.asm file:

Page 34 of 63

Setting up an interface with the
AIC23 Codec (step 3 of 3)

Initialization steps:

1. Initialize the DSK
2. Open the codec with

the default
configuration.

3. Configure multi-
channel buffered
serial port (McBSP)

4. Configure codec
parameters, e.g. set
the sampling rate

5. Configure and enable
interrupts

6. Do normal
processing (we just
enter a loop here)

See source code in project Lab02

Page 35 of 63

Setting the Sampling Rate
Here we open the codec with the default configuration:

The structure “config” is declared in dsk6713_aic23.h

Rather than editing the header file, we can change the sampling
frequency after the initial configuration:

Frequency definitions are in dsk6713_aic.h

Page 36 of 63

Other Codec Configuration
 Input volume (individually controllable for left and

right channels)
 Headphone output volume (individually controllable

for left and right channels)
 Digital word size (16, 20, 24, or 32 bit)
 Other settings, e.g. byte order, etc. For more details,

see:
 dsk6713_aic23.h
 Codec datasheet (TLV320AIC23B)
 C:\CCStudio_v3.1\docs\hlp\c6713dsk.hlp

Page 37 of 63

Some Things to Try
 Make a new project that:

 Polls DIP switch 0. If pressed, light up all four LEDs.
 Sets the sampling rate of the AIC23 codec to 44.1kHz.
 Uses an ISR to sample the left and right channels.
 Multiplies the left and right channels by a variable gain.
 Outputs the modified samples to the left and right

channels.
 Bonus: Swap the channels, i.e. Left_in -> Right_out,

Right_in -> Left_out, when DIP switch 0 is pressed.
 Bonus: Try changing the input/output volumes (hint:

look at default configuration in dsk6713_aic23.h)

Page 38 of 63

Lunch Break

Workshop resumes at 1:30pm…

Page 39 of 63

Debugging and Other Useful
Features of the CCS IDE
 Breakpoints
 Probe points
 Watch variables
 Plotting arrays of data
 Animation
 General Extension Language (GEL)

Page 40 of 63

Breakpoints and Probe Points

 Breakpoints: stop code execution at this point to allow state
examination and step-by-step execution.

 Probe points: force window updates and/or read/write
samples from/to a file at a specific point in your code.

break point

probe point

toggle
break point

toggle
probe point

clear all
break points

clear all
probe points

Page 41 of 63

Breakpoints

source step into
source step over

step out
ASM step into

ASM step over

run to cursor
set progam counter to cursor

“Run to Cursor” is a handy
shortcut instead of setting
a breakpoint

Page 42 of 63

Probe Points

 Differ from breakpoints: Halt the DSP
momentarily, perform an action, and then
automatically resume execution.
 Note that this may cause problems with real-time

operations.
 Facilitate repeatable testing via automatic file

input and/or output (on PC).
 For more details, see CCS Getting Started

Guide (SPRU509F.PDF) or CCS help.

Page 43 of 63

Watch Variables

Page 44 of 63

Watch Variables
 In the Watch Locals tab, the debugger

automatically displays the Name, Value, and
Type of the variables that are local to the
currently executing function.

 In the Watch tab, the debugger displays the
Name, Value, and Type of the local and
global variables and expressions that you
specify.

 Can add/delete tabs.

Page 45 of 63

Plotting Arrays of Data

Page 46 of 63

Plotting Arrays of Data

right click

Page 47 of 63

Animation
 Runs the program until a breakpoint is encountered.

 At the breakpoint, execution stops and all windows not
connected to any Probe Points are updated.

 Program execution then automatically resumes
 Useful for updating graphical displays
 Note: Animation may cause problems with real-time

operation
 Can pause execution at each breakpoint:

Option->Customize: Debug Properties tab
Animate Speed (0-9s) (zero = no pause)

Page 48 of 63

General Extension Language
 Create functions to extend the functionality

of Code Composer Studio
 GEL files are not loaded with a project

 Often used to change variables “on-the-fly”
 Examples from Chassaing textbook:

sin2sliders.pjt and sin2sliders.gel

Page 49 of 63

General Extension Language
 Useful GEL files can be pretty simple
 From sin2sliders.gel:

 Syntax details can be found in CCS help:
Help->Contents->Making a Code Composer Studio
Project -> Building and Running your Project ->
Automating Tasks with General Extension Language
(GEL)

Page 50 of 63

Some Things to Try
 Try out the debugging tools on the code you wrote in

the morning session
 breakpoints
 probe points
 watch variables
 animation

 Modify your stereo in/out project to have the output
gain changeable via a GEL slider

 Try out the CCS plotting tools
 Modify your code to have a buffer (i.e., store samples in an

array) and plot the contents.
 Try to have CCS animate a plot window

Page 51 of 63

Finite Impulse Response
(FIR) Filters
 Frequently used in real-time DSP systems

 Simple to implement
 Guaranteed to be stable
 Can have nice properties, e.g. linear phase

 Input/output relationship

x=input, y=output, h=filter coefficients, M=# of filter coefficients

Page 52 of 63

Creating FIR Filters
1. Design filter

 Type: low pass, high pass, band pass, band stop, ...
 Filter order M
 Desired frequency response

2. Decide on a realization structure
3. Decide how coefficients will be quantized.
4. Compute quantized coefficients
5. Decide how everything else will be quantized

(input samples, output samples, result of
multiplies, result of additions)

6. Write code to realize filter
7. Test filter and compare to theoretical expectations

Matlab

CCS

Page 53 of 63

Designing FIR Filters

>> fdatool

Page 54 of 63

Filter Realization Structures
 Lots of different structures available

 Direct form I, direct form II, transposed forms, cascade, parallel, lattice, …
 All have same input/output relationship
 Choice of structure affects computational complexity and how quantization errors

are manifested through the filter

right click
in this pane

Focus on “Direct form” for now.
We’ll discuss other options when
we look at IIR filtering tomorrow.

Page 55 of 63

Compute FIR Filter Coefficients

set up filter and press

Page 56 of 63

Make Coefficient File For CCS

Here you can change the coefficient data
type to match your desired quantization.

Page 57 of 63

Example DP-FP Coefficient File
/*
 * Filter Coefficients (C Source) generated by the Filter Design and Analysis Tool
 *
 * Generated by MATLAB(R) 7.0 and the
 *
 * Generated on: 19-Aug-2005 13:04:09
 *
 */

/*
 * Discrete-Time FIR Filter (real)
 * -------------------------------
 * Filter Structure : Direct-Form FIR
 * Filter Order : 8
 * Stable : Yes
 * Linear Phase : Yes (Type 1)
 */

/* General type conversion for MATLAB generated C-code */
#include "tmwtypes.h"
/*
 * Expected path to tmwtypes.h
 * C:\MATLAB7\extern\include\tmwtypes.h
 */
const int BL = 9;
const real64_T B[9] = {
 0.02588139692752, 0.08678803067191, 0.1518399865268, 0.2017873498839,
 0.2205226777929, 0.2017873498839, 0.1518399865268, 0.08678803067191,
 0.02588139692752
};

Can edit these to agree with your code.

Page 58 of 63

Quantization Considerations
 Key choice: floating point vs. fixed point
 Advantages of floating point math:

 Less quantization error
 Don’t have to worry about scaling factors
 Less likelihood of overflow/underflow
 Much easier to code

 Disadvantages of floating point math:
 Requires floating point DSP (higher cost, higher power)
 Executes slower than fixed point

 C code allows you to “cast” variables into any
datatype

Page 59 of 63

Write Code to Realize FIR Filter
 Direct form I implies direct realization of the

convolution equation

 Some considerations:
 Allocate buffer of length M for input samples.
 Move input buffer pointer as new data comes in or

move data?

Page 60 of 63

FIR filter example Code
interrupt void serialPortRcvISR()
{

union {Uint32 combo; short channel[2];} temp;
int i = 0;
float result = 0.0;

temp.combo = MCBSP_read(DSK6713_AIC23_DATAHANDLE);

// Update array samples (move data - this is the slow way)
for(i = N-1; i >= 1; i--)

samples[i] = samples[i-1];
samples[0] = (float)temp.channel[0]; // store right channel

// Filtering
for(i = 0 ; i < N ; i++)

result += fir_coeff[i]*samples[i];
temp.channel[0] = (short)result; // output to right channel
MCBSP_write(DSK6713_AIC23_DATAHANDLE, temp.combo);

}
Note that all math here is floating point.
Filter coefficients are also assumed to be floating point.

Page 61 of 63

Some Things to Try
 Try creating an FIR filter with the following specs:

 Bandpass
 8th order Direct Form I
 Least-squares design
 44100Hz sampling rate
 Fstop1 = 3000Hz
 Fpass1 = 4000Hz
 Fpass2 = 8000Hz
 Fstop2 = 12000Hz
 Equal weighting in all bands
 All floating point math (single or double precision)

 Use an oscilloscope and a function generator to compare the
magnitude response of your filter to the theoretical prediction.

Page 62 of 63

Workshop Day 1 Summary
What you learned today:

 Basics of the TMS320C6713 DSK and Code Composer Studio
 How to test the DSK
 How to open, build, load, and run existing projects
 How to create, build, load, and run new projects
 How to interface with DSK I/O (LEDs, DIP switches, and the

AIC23 codec)
 How to debug code in CCS including

 Setting and clearing breakpoints and probe points
 Setting up watch variables
 Plotting arrays of data
 Animation

 How to use, modify, and create GEL files in CCS.
 How to use Matlab’s filter design/analysis tool “fdatool”
 How to implement an FIR filter on the C6713

Page 63 of 63

Workshop Day 1
Reference Material
 Chassaing textbook Chapters 1-2, and 4
 CCS Help system
 SPRU509F.PDF CCS v3.1 IDE Getting Started Guide
 C6713DSK.HLP C6713 DSK specific help material
 AIC23 Codec datasheet
 DSK Quick Start Guide (included in your DSK box)
 Spectrum Digital TMS320C6713 DSK reference (included in your

DSK box)
 TMS320C6000 Programmer’s Guide (SPRU198G.PDF)
 Matlab fdatool help (>> doc fdatool)

Latest TI documentation available at
http://www.ti.com/sc/docs/psheets/man_dsp.htm

