ECE2305 Lecture Slides

William Stallings Data and Computer Communications Eighth Edition
Section 5.2 – “Digital Data, Analog Signals”

D. Richard Brown III
Worcester Polytechnic Institute
Electrical and Computer Engineering Department

Adapted from Prentice Hall instructor resources
Basics of Signal Encoding

- Important function of the physical layer: Convert data (e.g. bits) to signals (e.g. voltages).
- The signal must be designed to **efficiently propagate through the medium**.
- The signal must also be designed so that the receiver can **correctly interpret** it.
How to convey
digital information with signals

• Need two things:
 – A set of $M=2^L$ distinct signals
 • Each signal is called a “symbol”
 • The set is called an “alphabet”
 – A unique mapping between blocks of N bits and each signal

• Example (N=2)
 – Signal set = \{ \square \square \wedge \vee \} ($2^2 = 4$ signals)
 – Unique mapping
 • Logical 00 <-> \square
 • Logical 01 <-> \Box
 • Logical 10 <-> \wedge
 • Logical 11 <-> \vee

What does this signal mean? $\Box\wedge\Box$
An Example of a Bad Alphabet

Why is this alphabet bad?
“Analog” Signaling Basics

• Recall “digital” signaling, e.g.

• Digital signaling is inappropriate in many scenarios (interference with other signals or inefficient propagation):
 – Wireless communication
 – Optical communication
 – Cable modems
 – Digital subscriber loops (DSL)
 – Even basic voiceband modems (300Hz-3400Hz channel)

• Need “analog” signals in these cases
Common “Analog” Signals for Communication

• Main idea: Alphabet composed of sinusoidal signals with distinct amplitude, frequency, and/or phase shifts

• Sinusoidal signals allow control of signal spectrum
 – Efficient propagation in desired medium
 – Avoid interference with other signals

• Pure methods:
 – Amplitude shift keying (ASK)
 – Frequency shift keying (FSK)
 – Phase shift keying (PSK)

• Hybrid methods:
 – Quadrature amplitude modulation (QAM) (signals distinguished by both amplitude and phase shifts)
Figure 5.7 Modulation of Analog Signals for Digital Data
Amplitude Shift Keying

- encode data in signal amplitude, e.g.
 - Logical 0 -> $0\sin(\omega t)$
 - Logical 1 -> $A\sin(\omega t)$
- Can have more than two amplitudes, e.g.
 - Logical 00 -> $0\sin(\omega t)$
 - Logical 01 -> $A\sin(\omega t)$
 - Logical 10 -> $2A\sin(\omega t)$
 - Logical 11 -> $3A\sin(\omega t)$
- Used for
 - up to 1200bps telephone modems
 - optical fiber (light on/off)

Higher data rate but either increased power or likelihood of error at receiver
Frequency Shift Keying

- encode data in signal frequency, e.g.
 - Logical 0 \rightarrow $\sin(\omega t)$
 - Logical 1 \rightarrow $\sin(2\omega t)$
- Can have more than two frequencies, e.g.
 - Logical 00 \rightarrow $\sin(\omega t)$
 - Logical 01 \rightarrow $\sin(2\omega t)$
 - Logical 10 \rightarrow $\sin(3\omega t)$
 - Logical 11 \rightarrow $\sin(4\omega t)$
- Better error resistance than ASK
- Used in old voiceband modems (300 bps)

Higher data rate but either increased bandwidth or increased likelihood of error at receiver
Phase Shift Keying

- encode data in signal phase, e.g.
 - Logical 0 → sin(wt+0)
 - Logical 1 → sin(wt+π)
- Can have more than two phases, e.g.
 - Logical 00 → sin(wt+0)
 - Logical 01 → sin(wt+π/2)
 - Logical 10 → sin(wt+π)
 - Logical 11 → sin(wt+3π/2)
- This is called quadrature PSK (QPSK) – very popular for wireless communication

Higher data rate but increased likelihood of error at receiver
QPSK Modulator Block Diagram

- **Binary input**
 - \(R = \frac{1}{T_b} \)
 - \(a_n = \pm 1 \)
- **2-bit serial-to-parallel converter**
- **I(t)**
- **Q(t)**
 - \(b_n = \pm 1 \)
- **Carrier oscillator**
 - \(\frac{\cos 2\pi f_c t}{\sqrt{2}} \)
 - \(\frac{-\sin 2\pi f_c t}{\sqrt{2}} \)
- **Phase shift**
 - \(\pi/2 \)
- **Signal out**
 - \(s(t) \)
Spectral Efficiency

\[\eta = \frac{R}{B} \]

<table>
<thead>
<tr>
<th></th>
<th>(r = 0)</th>
<th>(r = 0.5)</th>
<th>(r = 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASK</td>
<td>1.0</td>
<td>0.67</td>
<td>0.5</td>
</tr>
<tr>
<td>Multilevel FSK</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(M = 4, L = 2)</td>
<td>0.5</td>
<td>0.33</td>
<td>0.25</td>
</tr>
<tr>
<td>(M = 8, L = 3)</td>
<td>0.375</td>
<td>0.25</td>
<td>0.1875</td>
</tr>
<tr>
<td>(M = 16, L = 4)</td>
<td>0.25</td>
<td>0.167</td>
<td>0.125</td>
</tr>
<tr>
<td>(M = 32, L = 5)</td>
<td>0.156</td>
<td>0.104</td>
<td>0.078</td>
</tr>
<tr>
<td>PSK</td>
<td>1.0</td>
<td>0.67</td>
<td>0.5</td>
</tr>
<tr>
<td>Multilevel PSK</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(M = 4, L = 2)</td>
<td>2.00</td>
<td>1.33</td>
<td>1.00</td>
</tr>
<tr>
<td>(M = 8, L = 3)</td>
<td>3.00</td>
<td>2.00</td>
<td>1.50</td>
</tr>
<tr>
<td>(M = 16, L = 4)</td>
<td>4.00</td>
<td>2.67</td>
<td>2.00</td>
</tr>
<tr>
<td>(M = 32, L = 5)</td>
<td>5.00</td>
<td>3.33</td>
<td>2.50</td>
</tr>
</tbody>
</table>
Bit Error Rates

![Graph showing the theoretical bit error rate for multilevel FSK and PSK](image)

Figure 5.13 Theoretical Bit Error Rate for Multilevel FSK and PSK
Hybrid method: Quadrature Amplitude Modulation (QAM)

- Basic idea: encode data in both **phase** and **amplitude**, e.g.
 - Logical 00 -> $A \cos(wt) + A \sin(wt)$
 - Logical 01 -> $A \cos(wt) - A \sin(wt)$
 - Logical 10 -> $-A \cos(wt) + A \sin(wt)$
 - Logical 11 -> $-A \cos(wt) - A \sin(wt)$

- No binary methods, but lots of higher order QAM:
 - 4QAM (2 bits per signal, like QPSK)
 - 16QAM (4 bits per signal)
 - 64QAM (6 bits per signal)
 - 256QAM (8 bits per signal)
 - ...

- Used in applications where spectral efficiency is critical, e.g. DSL and high data rate wireless
QAM Modulator Block Diagram
Which “Analog” Modulation Scheme Should I Use?

• **It depends...**

• **Power efficiency** important?
 – FSK is energy efficient but not bandwidth efficient

• **Spectral efficiency** important?
 – QAM, PSK, ASK are more bandwidth efficient but less energy efficient

• **Optical** systems?
 – ASK (very difficult to control/detect phase in optical transmission)

• Lots of tradeoffs. Best choice depends on the application.
Figure 7.66 Comparison of several modulation methods at 10^{-5} symbol error probability.

From Communication Systems Engineering
Proakis & Salehi