
1. What is the IP address and TCP port number used by your client computer (source) to
transfer the file to spinlab.wpi.edu?

My computer is at 10.211.55.3. The source port is 49247. See screenshot below.

2. What is the IP address of spinlab.wpi.edu? On what port number is it sending and receiving
TCP segments for this connection?

Spinlab is at 130.215.16.168 and is using port 80 (destination port). See previous screenshot.

3. What is the sequence number of the TCP SYN segment that is used to initiate the TCP
connection between the client computer and spinlab.wpi.edu? What is it in the segment
that identifies the segment as a SYN segment?

The (relative) sequence number is zero (Seq=0) and the flags are set such that SYN is set
(see screenshot below).

1

4. What is the sequence number of the SYNACK segment sent by spinlab.wpi.edu to the client
computer in reply to the SYN?

Also Seq=0 (relative sequence number, see screenshot below).

What is the acknowledgement number (Ack=?) in the SYNACK segment?

Ack = 1 (relative acknowledgement number, see screenshot below)

How did spinlab.wpi.edu determine that value?

As discussed in the TCP Mechanisms of the textbook, for a SYN message with sequence
number X, the SYNACK message will response with acknowledgement number X + 1.

What is it in the segment that identifies the segment as a SYNACK segment? Both SYN and
ACK flags are set (see screens shot below)

2

5. What is the sequence number of the TCP segment containing the HTTP POST command?
Note that in order to find the POST command; you’ll either need to dig into the packet
content field at the bottom of the Wireshark window, looking for a segment with a “POST”
within its DATA field or prevent Wireshark from reassembling the packets and displaying
them as one response, rather than as multiple continuation packets. This can be disabled by
going to Edit→ Preferences → Protocols → HTTP and unchecking the “Reassemble HTTP
bodies spanning multiple TCP segments” box.

Sequence number is 1 (see screenshot below)

3

6. Consider the TCP segment containing the HTTP POST as the first segment in the TCP
connection. Calculate the Round Trip Time (RTT). Note that the RTT time is the time
difference between the time of the POST message and the corresponding ACK.

As seen in the previous screenshot, the post occurred at 0.001504 and the ACK occurred at
time 0.001616, for a RTT of 0.000112 s or 0.112 ms.

7. What are the sequence numbers of the first six segments in the TCP connection (including
the segment containing the HTTP POST)? At what time was each segment sent? When was
the ACK for each segment received? Note: you may want to re-enable “Reassemble HTTP
bodies spanning multiple TCP segments” if you disabled this setting previously. Also note
that there may be multiple ACKs associated with each TCP segment. You should list the
time of the final ACK for each segment. The Statistics → Flow Graph → TCP flow view can
also be useful.

• 1) Seq = 1 sent at 0.001504; ACK received at 0.001616

• 2) Seq = 579 sent at 0.001776; ACK received at 0.002102

• 3) Seq = 3499 sent at 0.002119; ACK received at 0.002315

• 4) Seq = 9399 sent at 0.002332; ACK received at 0.002621

• 5) Seq = 21019 sent at 0.002648; ACK received at 0.002906

4

• 6) Seq = 44379 sent at 0.002927; ACK received at 0.003310

8. Given the difference between when each TCP segment was sent, and when its acknowledge-
ment was received, what is the RTT value for each of the six segments?

• 1) Seq = 1 RTT = 0.112 ms

• 2) Seq = 579 RTT = 0.326 ms

• 3) Seq = 3499 RTT = 0.196 ms

• 4) Seq = 9399 RTT = 0.289 ms

• 5) Seq = 21019 RTT = 0.258 ms

• 6) Seq = 44379 RTT = 0.383 ms

9. Plot the Round Trip Time Graph.Note: Wireshark has a nice feature that allows you to plot
the RTT for each of the TCP segments sent. Select a TCP segment in the “listing of captured
packets” window that is being sent from the client to the spinlab.wpi.edu server. Then
select: Statistics→TCP Stream Graph→Round Trip Time Graph.

5

For (a) and (b), fill in this table for 6 segments. For (c), hand in the graph.

Segment Seq. # Sent time ACK Receive Time Actual RTT
Seq = 1 0.001504 0.001616 0.112 ms
Seq = 579 0.001776 0.002102 0.326 ms
Seq = 3499 0.002119 0.002315 0.196 ms
Seq = 9399 0.002332 0.002621 0.289 ms
Seq = 21019 0.002648 0.002906 0.258 ms
Seq = 44379 0.002927 0.003310 0.383 ms

10. What is the length of each of the first six TCP segments?

Note: Generally, the TCP segments will all be less that 1460 bytes. This is because most
computers have an Ethernet card that limits the length of the maximum IP packet to 1500
bytes (40 bytes of TCP/IP header data and 1460 bytes of TCP payload). This 1500 byte
value is the standard maximum length allowed by Ethernet. If your trace indicates a TCP
length greater than 1500 bytes, and your computer is using an Ethernet connection, then
Wireshark is reporting the wrong TCP segment length; it will likely also show only one large
TCP segment rather than multiple smaller segments. Your computer is indeed probably
sending multiple smaller segments, as indicated by the ACKs it receives. This inconsistency

6

in reported segment lengths is due to the interaction between the Ethernet driver and the
Wireshark software.

My results show “too long” TCP segments. Even disabling the “Reassemble HTTP bodies
spanning multiple TCP segments” doesn’t seem to fix this.

• 1) Seq = 1 length = 632

• 2) Seq = 579 length = 2974

• 3) Seq = 3499 length = 5894

• 4) Seq = 9399 length = 11734

• 5) Seq = 21019 length = 23414

• 6) Seq = 44379 length = 21790

11. Are there any retransmitted segments in the trace file? What did you check for (in the trace)
in order to answer this question? (hint: plot the time sequence graph from the statistics
menu)

Note: Select a TCP segment sent from your computer to the server in the Wireshark’s “listing
of captured-packets” window. Then select the menu: Statistics→TCP Stream Graph→Time-
Sequence- Graph (Stevens). You should see a plot that looks similar to the plot in Figure 3.
Each dot represents a TCP segment sent, plotting the sequence number of the segment versus
the time at which it was sent. Note that a set of dots stacked above each other represents a
series of packets that were sent back-to-back by the sender.

No retransmitted segments. See screenshot below. My results look different than in the lab
assignment since Wireshark appears to be lumping multiple smaller TCP segments into large
segments.

7

12. How much data does the receiver typically acknowledge in an ACK? Show an example.

From the screenshot below, we see that the ACK numbers increase in the sequence 10799, 12259, 13719,
Note that the ACK numbers increase by 1460 each time, indicating that the receiver is ac-
knowledging 1460 bytes.

8

13. What is the average throughput (bytes transferred per unit time) for the TCP connection?
Explain how you calculated this value.

I looked to the FINACK packet which shows a acknowledgement number of 152900, meaning
that 152900 bytes were acknowledged (this is consistent with the length of the alice.txt file).
The time on this message is 0.007525. So an approximate average throughput can be calculated
as 152900 bytes

0.007525 seconds
≈ 2.032 MBps (mega bytes per second) for this connection. See screenshot

below.

9

10

