ECE 2305: Introduction to Communications and Networks

Quiz #3 3:00-3:30 PM, April 10, 2014

Name:	Solutions	
	Box #:	

Instructions:

- Do not open this quiz until you are instructed to do so.
- This quiz is closed book, but you are permitted to bring one two-sided 8.5" by 11" sheet of notes.
- Calculators are permitted.
- Laptops or other electronic devices with wireless capability are not permitted.
- No collaboration is permitted; the WPI academic honesty policy is in effect.
- You have 30 minutes to complete the quiz.
- No partial credit will be awarded for multiple choice problems.
- Please submit your sheet of notes when you turn in your quiz.

Problem	Points	Score
1	15	
2	5	
3	5	
4	10	

Good luck!

1. Propagation modeling (15 pts total) Consider the wireless propagation model

attenuation(dB) =
$$10 \log_{10} \left(\frac{(4\pi d)^2}{\lambda_c^2 G_t G_r} \frac{1}{4 \sin^2 \left(\frac{2\pi h_t h_r}{\lambda_c d} \right)} \right)$$

where λ_c is the carrier wavelength (meters), and G_t and G_r are the absolute transmit and receive antenna gains, respectively, d is the distance between the transmit and receive antennas (meters), and h_t and h_r are the transmit and receive antenna heights, respectively.

(a) 5 pts. What are the implicit assumptions in this wireless propagation model?

This is a line-of-sight propagation model over a flat reflecting surface that causes multipath propagation. The carrier frequency is at least 30 MHz.

(b) 10 pts. Suppose d, G_t , G_r , and λ_c are all fixed but you are allowed to vary h_t and/or h_r (the transmit and receive antenna heights). How should h_t and h_r be selected to minimize the attenuation?

Smallest attenuation occurs when the term $\sin^2\left(\frac{2\pi h t h r}{\lambda c d}\right)$ is largest. Since $\sin^2\left(\frac{2\pi h t h r}{\lambda c d}\right) \leq 1$, we need

$$Sin^2\left(\frac{2\pi hthr}{\lambda_c d}\right) = 1$$
 or $\frac{2\pi hthr}{\lambda_c d} = \frac{\pi}{2} + n\pi, n=0,\pm1,\pm2,...$

Hence, $hthr = \lambda c \cdot d \left(\frac{n}{2} + \frac{1}{4} \right)$

The product of antenna heights should be $\frac{2n+1}{4}$ multiple of $\lambda c \cdot d$.

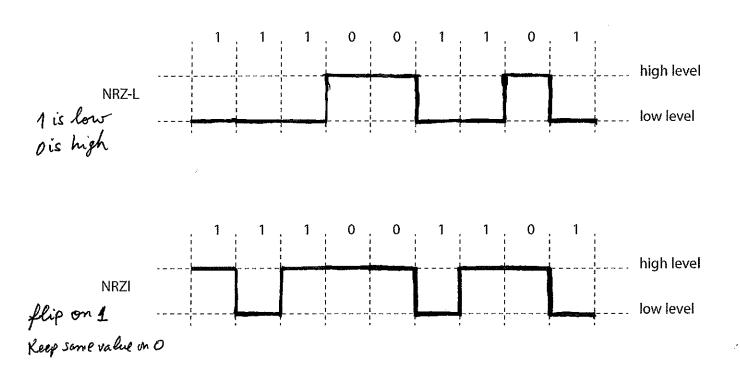
2. Shannon Limit (5 pts) Which channel has a larger Shannon capacity: (a) 20 MHz bandwidth with SNR=10 dB or (b) 40 MHz bandwidth with SNR=6 dB? Explain.

Hrite Shannon capacity:

$$C = B \cdot log_2 (1 + SNR)$$
For a) $lolog_{10} (SNR) = lod B$

$$SNR = 10^{1} = 10$$

capacity
$$Ca = 20.10^{6} \cdot log_{2}(1+10)$$


$$= 69.2 \cdot 10^{6} \text{ bits/sec}$$

$$C_b = 40.10^6 \cdot log_2 (144)$$

= 92.9 - 10⁶ bib/se2
The 40M42 channel has higher capacity.

3. Conditional get with http protocol (5 pts) In the lab, we saw that the http protocol performs a "conditional get" when requesting an object from the server. What is the reason for including this feature in the http protocol?

A "conditional get" is used to indicate if a resource has been modified when reguested again. This is used inorder to not send the same resource to the client on follow-up requests if it hack't be en modified.

4. NRZ-L versus NRZ-I (10 pts) Recall the NRZ-L (Nonreturn to Zero Level) and NRZI (Nonreturn to Zero, invert on ones) encoding schemes. Sketch the waveforms for NRZ-L and NRZI-encoded signals corresponding to the bit stream 111001101. Use the figures below to make your sketch neat. For NRZI, the first bit has been already sketched; just sketch the remaining bits.

