ECE 2305: Introduction to Communications and Networks

Quiz #5
3:00-3:30 PM, 01-May-2014

Name:	SOLUTION		
	Box #:		

Instructions:

- Do not open this quiz until you are instructed to do so.
- This quiz is closed book, but you are permitted to bring one two-sided 8.5" by 11" sheet of notes.
- Calculators are permitted.
- Laptops or other electronic devices with wireless capability are *not* permitted.
- No collaboration is permitted; the WPI academic honesty policy is in effect.
- You have 30 minutes to complete the quiz.
- No partial credit will be awarded for multiple choice problems.
- Please submit your sheet of notes when you turn in your quiz.

Problem	Points	Score
1	15	
2	10	
3	10	

Good luck!

1. 15 pts total. Consider the (7,2) block code shown below.

Data Bits	Codeword
00	0000000
01	0101010
10	1010101
11	1111111

(a) 5 pts. What is the number of guaranteed correctable errors for this code? Explain.

$$d_{min} = 3$$
 for this code
 $t_c = \left\lceil \frac{d_{min} - 1}{2} \right\rceil = 1$

Hence we can guarantee correction of 1 error

(b) 5 pts. What is the number of guaranteed detectable errors for this code? Explain.

Hence we can guarantee detaction of 2 enors.

(c) 5 pts. Is this a good code? Can you provide an example of a better code?

This is not a good rode because the redundancy is high for the error correction ability.

Redundancy =
$$\frac{1-K}{K} = \frac{7-2}{2} = \frac{5}{2}$$

A better code that has the same error correcting capability is the (7,4) Hamming code. It has redundancy $\frac{7-4}{4} = \frac{3}{4}$ which is much better than a (7,2) rode.

- 2. 10 pts total. Suppose you have a link using sliding window flow control with a frame time of $t_{\text{frame}} = 100 \ \mu\text{s}$ and a propagation time of $t_{\text{prop}} = 2 \ \text{ms}$. Assumptions:
 - · processing and acknowledgement times are negligible
 - all frames are received correctly (no errors or lost frames)
 - the receiver sends an RR (receive ready) acknowledgment for every received frame
 - the sender/receiver have a full-duplex link.
 - (a) 5 pts. How long should the sliding window be (in frames) to achieve 100% link utilization? Explain.

(b) 5 pts. The total time to deliver n frames starts at the beginning of the transmission of the first frame and finishes at the end of the receipt of the last acknowledgement. Assuming a sliding window long enough such that no stalls occur, how long will it take to deliver 100 frames?

3. 10 pts. Suppose you have a link using go-back-N error control with a frame time of $t_{\text{frame}} = 100 \ \mu \text{s}$ and a propagation time of $t_{\text{prop}} = 2 \ \text{ms}$. If the sliding window length W = 127, determine the maximum frame error probability such that the system achieves an average link utilization of at least 90%.

Since
$$W \ge 2a+1$$
, the average link utilization is
$$E[u] = \frac{1-p}{1+2ap}$$

We want
$$E[u] \ge 0.9$$

Hence

$$\frac{1-P}{1+2aP} \geq 0.9$$

$$\Rightarrow P \leq \frac{0.1}{1.8a+1}$$
 $a = \frac{2ms}{100\mu s} = 20$

$$\Rightarrow$$
 P $\leq \frac{0.1}{37} \approx 0.0027$

Hence
$$P \leq 0.0027$$
 will give a link utilization of at least 90%.