
Pre-Scaling to Avoid Overflow and Maintain

Maximum Precision in Fixed-Point Multiplication

D.R. Brown III

November 5, 2012

1 Problem Setup and Notation

In almost all real-time DSP algorithms, we need to perform multiplication and
addition. Those operations are straightforward when done in floating point, but
are trickier when done in fixed point. This note discusses the special consider-
ations that must be taken when performing fixed-point multiplication.

Consider the real numbers x and y. These numbers are quantized to a
fixed-point representation as xq and yq where

xq = x+ ǫx (1)

yq = y + ǫy (2)

where ǫx and ǫy are the quantization errors in xq and yq, respectively. The
quantized variables xq and yq are assumed to have Nx and Ny total bits as well
as Mx and My fractional bits, respectively.

We wish to compute the product

zq = xq ∗ yq (3)

as accurately as possible given the constraint that zq is a fixed-point variable
with Nz total bits. In the next section, we determine the maximum number of
fractional bits Mz that we can have for zq while avoiding overflow/saturation
and we also determine the optimal amount of pre-scaling on the multiplicands
xq and yq to maintain maximum precision.

2 Analysis

As discussed in lecture, to avoid overflow, we require the largest positive value
of zq to be at least as large as the largest possible positive product of xq and
yq, i.e.,

2Nz−1 − 1

2Mz
≥

(
−2Nx−1

2Mx

)(
−2Ny−1

2My

)

. (4)

1



In order to maintain full precision, we also require

Mz ≥ Mx +My. (5)

If both conditions can be satisfied, then you should set Mz = Mx+My and you
are done. There is no need to determine optimum pre-scaling factors.

In many cases, both of these conditions can’t be satisfied since setting Mz =
Mx + My causes the first condition to simplify to Nz ≥ Nx + Ny − 1. For
example, if xq, yq, and zq are all short variables (Nx = Ny = Nz = 16), then
both conditions can’t be satisfied. When both conditions can’t be satisfied, it
is much better to throw away precision, i.e. violate the second condition in (5),
than have overflow. This means we need to determine the best value of Mz

(which will not satisfy the second condition) and then determine the best pre-
scaling factors for xq and yq to maintain as much precision as possible in the
product. The following sections describe how to do this.

2.1 Determining the Largest Mz That Avoids Overflow

At this point, we know we need to throw away precision, but we don’t want to
throw away too much precision. Our goal is to find the largest value of Mz such
that the product xq ∗ yq will not overflow in the container zq.

To do this, we compute the largest possible positive product of xq and yq,
i.e.,

2Nz−1 − 1

2Mz
≥

(
−2Nx−1

2Mx

)(
−2Ny−1

2My

)

. (6)

We are given Mx, My, Nx, Ny, and Nz, and we need to solve for Mz. We can
rearrange this last equation to write

2Nz−1 − 1
(

−2Nx−1

2Mx

)(
−2Ny−1

2My

) ≥ 2Mz (7)

and then assuming that 2Nz−1 ≫ 1, we can simplify this last expression to

2Nz−Nx−Ny+Mx+My+1
≥ 2Mz (8)

which implies an upper bound on Mz as

Mz ≤ Nz −Nx −Ny +Mx +My + 1. (9)

As an example, suppose Mx = 11, My = 13, and Nx = Ny = Nz = 16.
Then we should select Mz = 9 to maintain maximum precision while avoiding
overflow. This means that the LSB of the product has a value of 2−Mz = 2−9

which is significantly less precise than the full-precision product which would
have an LSB with a value of 2−(Mx+My) = 2−24. Nevertheless, this is the best
we can do while avoiding overflow.

Note that Mz might be a negative number. This is ok; a negative number
of fractional bits just means the implicit decimal point is moved to the right.

2



For example, suppose Mx = 3, My = 5, and Nx = Ny = Nz = 16. Then we
should select Mz = −8. This just means that the LSB of product has a value
of 2−Mz = 256.

2.2 Determining Optimum Pre-Scaling Factors Px and Py

Once we’ve determined a value forMz according to the procedure in the previous
section, if it violates the condition in (5), we know that we will need to throw
away some precision before computing the product. A bad way to do this is

zq = (xq * yq) >> P;

because overflow occurs before we throw away precision. Instead, we throw
away precision before the product as

zq = (xq >> Px)*(yq >> Py);

where Px and Py are the pre-scaling factors that we need to determine.
First off, how many total bits of precision do we need to throw away? The

full-precision product has Mx +My fractional bits, but we’ve determined that
we can only have Mz fractional bits to avoid overflow. So we must throw away
a total of P = Mx +My −Mz fractional bits. Hence, we require Px + Py = P .

Now, we will determine how to best allocate those bits between Px and Py.
We can write the fixed-point product as

zq = xq ∗ yq (10)

= (x+ ǫx)(y + ǫy) (11)

= xy
︸︷︷︸

true answer

+ xǫy + yǫx + ǫxǫy
︸ ︷︷ ︸

error

(12)

Recall that x and y are the unquantized multiplicands. Since we quantized these
values with Nx and Ny total bits and Mx and My fractional bits, respectively,
we know these numbers are on the order of

x ∼ 2Nx−1−Mx (13)

y ∼ 2Ny−1−My . (14)

We also know the quantization errors are on the order of an LSB value after

pre-scaling. Since the number of fractional bits in xq and yq after pre-scaling is
Mx − Px and My − Py, respectively, we can say

ǫx ∼ 2−(Mx−Px) (15)

ǫy ∼ 2−(My−Py). (16)

Hence, the total error ǫ = xǫy + yǫx + ǫxǫy in the product is on the order of

ǫ ∼ 2Nx−1−Mx2−(My−Py) + 2Ny−1−My2−(Mx−Px) + 2−(Mx−Px)2−(My−Py). (17)

3



Note that the third term in the sum on the right hand side is much smaller
than the first two, since the product of two quantization errors should be much
smaller than the product of a quantization error with an unquantized value. We
will ignore that third term in the subsequent analysis since it is insignificant.
Simplifying the remaining two terms, we can say the total quantization error of
the product is on the order of

ǫ ∼
(

2−(Mx+My+1)
) (

2Nx+Py + 2Ny+Px
)
. (18)

We want to find Px and Py to minimize this quantity subject to the constraint
that Px+Py = P . Note that the first term in (18) is a positive constant, i.e. not
a function of Px or Py. This means it doesn’t affect the minimization. Using
this fact, and substituting Py = P −Px into (18), we can write the minimization
problem as

Px = arg min
k=0,...,P

(
2Nx+P−k + 2Ny+k

)
(19)

where arg means “give me the value of k that achieves the minimum”. Note
that Py is then straightforwardly computed as Py = P −Px. Also note that the
optimum values for Px and Py don’t depend on the number of fractional bits,
except indirectly through P since P = Mx +My −Mz.

The easiest way to find this minimum is to just plot it in Matlab for given
values of Nx, Ny, and P using the stem command. As an example, suppose
Mx = 11, My = 13, and Nx = Ny = Nz = 16. We know from the previous
section that we should set Mz = 9 to avoid overflow. This means that we must
throw away P = Mx+My−Mz = 15 fractional bits to avoid overflow. If we plot
(19) for k = 0, . . . , 15 with the stem command in Matlab, we get the result
shown in Figure 1. These results imply that Px = 7 or Px = 8 minimizes the
error in the fixed-point product. Hence, either

zq = (xq >> 7)*(yq >> 8);

or

zq = (xq >> 8)*(yq >> 7);

would give the best results for this example.

3 Conclusion

Fixed-point processing requires special care to maintain as much precision as
possible while avoiding overflow. Throwing away precision is undesirable, but it
isn’t as catastrophic as overflow. Our goal is to maintain as much precision as
possible for as long as possible while avoiding overflow. This note explains how
to do this when performing fixed-point multiplication.

4



0 5 10 15
0

0.5

1

1.5

2

2.5
x 10

9

k

Figure 1: Total quantization error in product as a function of k for the example
with Mx = 11, My = 13, Nx = Ny = Nz = 16 and Mz = 9.

5


