ECEA4703 B Term 2006 Project 1

Signoff Due by 1:50pm on 1-Nov-2005

The goals of this laboratory assignment are:
e to familiarize you with the TMS320C6713 DSK hardware platform,

e to familiarize you with the process of creating, building, and testing some simple projects in
the Code Composer Studio (CCS) integrated development environment (IDE),

e to familiarize you with some of the debugging, profiling, and visualization tools available
within the CCS IDE, and

e to allow you to explore the I/O capabilities of the DSK.

1 Preliminaries

This lab assignment is intended to familiarize you with most of the tools used to develop interesting
real-time DSP systems in ECE4703. A portion of this assignment is self-study and is necessary to
give you a better understanding of the capabilities and structure of the lab tools. The remainder
of this assignment is a hands-on exploration of the lab tools where you will develop three small
C programs that will run on the TMS320C6713, interface with the basic I/O on the DSK, and
perform some simple functions.

2 Self-Study

Begin by familiarizing yourself with the TMS320C6713 DSK technical reference (available as a PDF
file on the course web page). You do not need to memorize everything in this document but you
should become familiar with the key features and basic operation of the DSK. In Chapter 2, focus
on the AIC23 codec (Section 2.2) and the LEDs and DIP switches (Section 2.5). Also be sure to
check out the board layout and connector information in Chapter 3. You should know the function
of all connectors on the DSK and where the main components are located.

Next, find the help file for the TMS320C6713 DSK. This used to be available through the CCS
help system but now you have to find it and open it manually. Search the C:\CCStudio_v3.1\
directory for the file called “C6713DSK.HLP”. Open this file and browse through the information.
Much of what you will find here with respect to the hardware is repeated from the DSK technical
reference but there is also additional information on the very important “Board Support Libraries”
under the “Software” section. Focus your reading on the Software section (it is ok to skip the
DSP/BIOS subsection) and be sure to look at the Examples subsection. The information in this
section may be very useful for you to develop the programs described later in this assignment.



At this point, you should be familiar with the DSK hardware and the Board Support Library
function calls that you can use to interface to the hardware. The final self-study task is to familiarize
yourself with the Code Composer Studio integrated development environment. Code Composer
Studio (CCS) is a complicated program with a massive amount of functionality. To begin to
understand how to use CCS, go to Help—Tutorial. Since ECE4703 will only rely on the basic
capabilities of CCS, focus your reading on the chapter entitled “Code Composer Studio IDE” and
specifically on the section entitled “Developing a Simple Program”. Once you have completed this
section, skim through the tutorials on “Using Debug Tools” and “Profiling Code Execution”. You
may want to take a peek at the other sections under “Code Composer Studio IDE” chapter but
most of the material in these sections will not be used in ECE4703. Following the examples in key
sections of this chapter will give you the basic tools needed to develop, debug, and characterize the
performance of most programs in CCS.

One final note on the tutorials: The examples use the general runtime library file rts.lib. This
is incorrect for the TMS320C6713 DSK. Instead, use the library file rts6700.lib.

3 Programming Assignments

Please set up separate projects for each of the following programs. Also, it is a good idea to liberally
comment your code. You will need to demonstrate and explain your work during the signoft.

3.1 Program 1: Hello World

In this part of the assignment, you will write, compile, and run one of the simplest possible programs
for the TMS320C6713 DSK. The goal is to simply generate the output “Hello World” on the CCS
console. Here are the suggested steps:

1. Create a new project through Project—New. Call it whatever you want. Make sure you set
the “Target” field to TMS320C67XX.

2. Create the C source code for your project through File—New—Source File.

(a) You should put some header comments at the top of your file with your name, the date,
and other information about the project. Comment lines begin with “//”.

(b) The code for this assignment is quite simple. After your header comments, just type

#include <stdio.h> // include the standard I/0 functions
void main()

{
printf ("Hello World\n");

¥

3. Save your C source code to your project directory as a C file using File—Save. Make sure you
set the file type as a C source file with .c extension and make sure it ends up in the correct
project directory.

4. Add your source code to the project through Project—Add Files to Project.



5. Add a linker command (.cmd) file to the project. A good linker command file can be found in
the C6713 files in the Kehtarnavaz textbook CD. The linker command file sets up the memory
map for the CCS linker to make sure the code and data are loaded to the desired locations.

6. Add the run-time support library functions file rts6700.1ib to the project. This can be found
in the directory c6000\cgtools\lib. Do this with Project—Add Files to Project. The rts6700
library is necessary for even the simplest programs.

7. Set up the target version by going to Project—Build Options.

(a) Go to the Compiler tab.
(b) Click on the Basic category.
(c) Select “C671x” in the “Target Version”.

8. Try building the project at this point through Project—Build. Fix any errors that occur
at this point. You may also see 2 cryptic warnings about default sizes for the “.stack”
and “.sysmem” sections. These warnings are caused by a lack of explicit directions in the
Kehtarnavaz linker command file for the size of the “.stack” and “.sysmem” sections. Usually,
the default values chosen by the compiler are fine. To use the default values and suppress the
warnings, go to Project—Build Options.

(a) Go to the Linker tab.
(b) Click on the Advanced category.

(¢) Uncheck “Warn about output sections”.

9. Try building the project now. You should have “0 Errors, 0 Warnings, 0 Remarks”. There
may be one final warning about a missing newline at the end of your source code. You can
get rid of this warning by putting one blank line at the end of your C code. If you are still
getting errors or warnings, go back through these steps and correct any mistakes.

10. Once you have no errors or warnings, it is time to load your code to the DSK. First, connect
to the DSK by pressing “Alt+C”. Then load your program with File—Load Program. Go
into the debug directory and select the .out file. Hit ok.

11. Now do Debug—Run and you should see “Hello World” appear in the stdout pane at the
bottom of the CCS window. To run the program again, go to Debug—Restart and then
Debug—Run.

12. Play around with your program a bit to see what else you can do. Try setting a breakpoint.
Try profiling the execution time of the printf statement. Note that you may find the printf
function handy in the future for debugging your code.

3.2 Program 2: LEDs and DIP switches

This program should check the status of all four dip switches and light up the corresponding LED
for each dip switch in the on (up) position. Here are some hints on how to achieve this functionality:

1. You will need to include the library dsk6713bsl.lib. This library contains all of the special
functions for interfacing with the components on the DSK. You should already be familiar
with these functions and where to find information on them if you completed the self-study
portion of this assignment.



2. You will also need the library csl6713.1ib which contains chip specific information for the
C6713.

3. In your main C code, you should initialize the DSK before you do anything else. See the BSL
documentation in the C6713DSK.HLP file for information on how to do this.

4. You should initialize the LEDs and DIP switches before you access them. See the BSL
documentation in the C6713DSK.HLP file for information on how to do this.

5. Once you have initialized everything, you should enter an infinite loop that checks the DIP
switches and changes the state of the LEDs appropriately.

6. Your code should compile without any errors or warnings. Load the code to the DSK and
run it. Your code should work correctly and you should be able to explain all aspects of your
code during the signoff.

3.3 Program 3: AIC23 Stereo Codec

The AIC23 stereo codec is used for analog to digital as well as digital to analog conversion on the
DSK. It is optimized for audio applications and is highly configurable. In this program, you will
read both channels of the codec, buffer these channels to an array of data, and then output the
channels to the codec. A dip switch will be polled to see if the channels should be swapped. Here
are some hints on how to achieve this functionality.

1. Use Kehtarnavaz’s Lab 2 (see pages 106-107 of Chapter 5 of your textbook) as a framework
for this project. You can either start with the code you developed for the LEDs and DIP
switches project (make sure you start a new project, however) and add functionality from
Kehtarnavaz’s Lab 2 or, vice-versa. Make sure you understand each step in Kehtarnavaz’s
Lab 2 code.

2. Note that the Kehtarnavaz code uses an interrupt interface for dealing with the AIC23 codec.
Some comments:

e The code “hooks” the interrupt to the interrupt service routine (ISR) called “serial-
PortRevISR”. This is done in the function “hookint” and also in the file “vectors.asm”.
The hookint function maps a physical interrupt event (IRQ_EVT_RINT2) to an inter-
rupt number (INT15) and enables interrupts. The file vectors.asm has some assembly
language code that causes a branch to serialPortRcvISR to occur whenever INT15 is
detected.

e Note that the DSP is sitting in an infinite loop and basically doing nothing unless it gets
an INT15 signal. Your code will need to poll a dip switch in this main loop and, if the
dip switch has been pressed, set a flag to tell the ISR to swap the channels.

e In the ISR, the codec is accessed through the MCBSP_read and MCBSP_write functions.

3. The tricky part here is how to interpret the results returned by the codec. The variable
“temp” is a Uint32 data type and contains two 16-bit samples corresponding to the left and
right channels. More specifically, the first 16 bits of “temp” are a signed integer representing
the sample of one channel and the second 16 are a signed integer for the other channel. A
convenient way to deal with this is to replace temp with a “union” in C, e.g.



union {Uint32 combo; short channel[2];} data;

With this structure, you can access the individual channel samples via data.channel[0] or
data.channel[1] and you can access the entire 32 bit chunk containing both channels with
data.combo. Which channel is the left and which is the right? Can you experimentally verify
this?

4. Test your code up to this point. Make sure that you are correctly reading the left and
right channels and correctly swapping them. Make sure this part is working correctly before
proceeding.

5. Finally, declare arrays to hold the last 1024 samples of the left and right channels. Increment
a pointer through the array (taking care of the wraparound issues) and put the samples into
the arrays as they are read. You can look at the contents of these arrays in the watch window
or (even better) try using the visualization tools in CCS to plot the contents of the arrays.

6. Your code should compile without any errors or warnings. Load the code to the DSK and
run it. Your code should work correctly and you should be able to explain all aspects of your
code during the signoff.

4 In Lab

You are permitted to work alone or on a team of two. All signoffs for this assignment will be
completed individually, so it is important that you participate in all aspects of the assignment.

5 Additional Exploration

1. During the signoff, you will be expected to be able to demonstrate basic debugging and code
profiling skills. Even if you get your code working perfectly, it is important that you explore
these features of CCS. Make sure that you can:

e Set breakpoints: It is very easy to set breakpoints in CCS. Just highlight the line where
you want your code to stop and double click on it. The breakpoint is indicated by a
solid red circle on the left margin. You can clear the breakpoint in the same way.

e Watch variables: This is also fairly straightforward. Use the CCS menu to select “View
— Watch Window”. The watch window will appear (usually somewhere near the bottom
of the CCS environment). Select the “Watch 1”7 tab. To add a variable, double click
under the “Name” column and type the variable name. You can also specify how you
want CCS to display the variable, e.g. decimal, hex, etc.

Play around with CCS and read the tutorials to see the full range of debugging features.

2. Although you will not be tested on this, you might find it useful to explore the graphing
capabilities of CCS. CCS allows you to plot signals generated and processed by your program.
To do this, use the CCS menu to select “View — Graph — Time/Frequency”. This will
bring up a graph property dialog box where you can set various parameters. Select the type
of graph you want (you can get time or frequency domain plots) and set the start address
to your output buffer. Set the acquisition buffer size to the length of your output buffer



(probably 1024), set the display data size to the same number and set the DSP data type
to 16-bit signed integer. Finally, set the sampling rate to your actual sampling rate and hit
the OK button. You should see nice plot of your data. Play around with various plot types
and other parameters to become familiar with this convenient tool. You can use this tool for
generating plots that can be used in your lab reports. See the CCS tutorial link on the course
web page for more details on the graphing capabilities of CCS (including how to animate
plots to show the data in “real-time”).

3. Finally, try out various signals in your system including sinusoids, square waves, and even
music or speech (you can use the computer’s sound card output or bring in a portable audio
player). Try listening to the output with a pair of headphones.

6 Final Remarks

Please be aware that each of the laboratory assignments in ECE4703 will require a significant
investment in time and preparation if you expect to have a working system by the signoff period
on the assignment’s due date. This course is run in “open lab” mode where it is not expected that
you will be able to complete the laboratory in the scheduled official lab time. It is in your best
interest to plan ahead so that you can use the TA and senior tutor’s office hours most efficiently.



