ECEA4703 B Term 2006 Project 5

Signoff due by 1:50pm 6-Dec-2006. Report due by 4:00pm 7-Dec-2006.

The goals of this laboratory assignment are:

e to familiarize you with computationally efficient processing via the Cooley-Tukey implemen-
tation of the Fast Fourier Transform (FFT) and

e to allow you to experimentally verify the computational performance of the FFT versus the
DFT.

1 Problem Statement

The FFT is an efficient algorithm for calculating the DF'T and is used in a variety of signal processing
applications. The most common implementation method for the FFT is the Cooley-Tukey algorithm
where a large DFT is broken down into smaller DFTs. The outputs of the smaller DFTs are
reassembled in a special way to form the final result and the overall amount of computation required
is much less than a direct calculation of the DFT.

This assignment has three parts. First, you will implement the basic direct DF'T, run it in real-
time for various values of IV, and profile the execution to observe the computational trends. The
second part of the assignment is to implement the radix-2 decimation-in-time Cooley-Tukey FFT,
run it in real-time for various values of N, and profile the execution to observe the computational
trends. Finally, you will compare your results to TI’s optimized FFT code, primarily in the function
cfftr2 dit.sa.

2 Part I: Implementation of the DFT

The first part of this assignment is to implement the direct DFT as a function written in C. You
will want to include the header file math.h to allow for computation of the sin and cos terms needed
in the DFT. Your function must be able written generally to allow for any value of NV that is an
integer power of 2, i.e. N = 2,4,8,16, 32....

To facilitate comparisons, you should adhere to the calling convention used by TI’s optimized
FFT code. Specifically, your function call should work like:

void your_dft(float *x, const float #*w, short N)
x Pointer to Array of Dimension 2*N elements holding

Input to and Outputs from function your_dft()

*
*
*
*
* w Pointer to an array holding the complex twiddle factors
*

N Number of complex points in x

Note that everything is globally declared. The result of the DFT is returned in z. You should
compute the sin/cos portions of the “twiddle factors” prior to the DFT function call and store
them in W. All input/output arrays and twiddle factors should be single-precision floating point
datatypes.

To test your DFT, configure the AIC23 codec for 8kHz sampling rate and connect an interesting
test signal like a 1kHz sinusoid to the line-in jack. Make the left output channel the real part of z[n]
and the right output channel the imaginary part of xz[n]. Or, alternatively, compute the squared
magnitude and output this on either the left or right channels. You can either look at the output
using CCS’s plotting function or send the output to the AIC23 for display on an oscilloscope. After
you are certain that your DFT works, profile the execution of your function with and without
compiler optimization for various values of N. Increase N until the DFT can no longer execute in
real-time.

3 Part II: Implementation of the FFT

In this part, you will replace your DFT function from Part I with a Cooley-Tukey radix-2 decimation-
in-time FFT function. To receive full credit for this part of the assignment, you are required to
support at least N = 2,4, 8,16, 32. It may be tricky to write one general function that works for any
value of N, hence it is acceptable to write separate functions, e.g. fft2, fft4, fft8, If you choose to
take this approach, it is also acceptable to have your higher-numbered fft functions call the lower
number functions, reassembling the outputs of the lower numbered functions appropriately.

Make sure your FFT code is called identically to the DFT code in Part 1. Test and profile your
FFT as described in Part I. The output of the FFT should be identical to that of the DFT but,
for large enough N, your FFT should execute faster than the DFT.

4 Part III: Using TI’s Optimized FFT

Due to the wide variety of applications for the FFT, TI provides an optimized linear assembly
function to implement FFTs on the C6x. In this part of the assignment, you will evaluate the
performance of TIT’s routine with respect to your DFT and FFT code.

You will need three functions to use TT’s optimized FFT routines. These functions are cfftr2_dit,
digitrev_index, and bitrev. These files can be found in various places in the myprojects directory,
e.g. the FFTr2 project folder.

Test and profile TT’s FF'T as described in Part I. Increase N until the FFT can no longer execute
in real-time. Does compiler optimization affect the results?

5 In Lab

You will work with the same lab partner as in the prior laboratory assignments. Please contact
the instructor if your lab partner has dropped the course or if you have concerns about your lab
partner’s performance on the prior assignment.

6 Suggested Procedure for Software Design

1.

Begin by at least skimming Chapter 9 of the Kehtarnavaz text. There are several good
examples in here that may give you ideas on how to start the assignment.

. Make sure your DFT code works before progressing to the FFT. You will need the DFT to

check the results of the FFT, so it important that you fully test your DFT code and are
confident that it is working correctly.

Write and test your FFT code for smaller values of N first. Recall that, at N = 2, the FFT
and the DFT perform the same calculations. Make sure your FF'T code gives exactly the same
output as your DFT code. If it doesn’t then one (or both) functions are wrong. If you want
to check your answers, you can use Matlab, Chassaing’s or Kehtarnavaz’s example code, or
even TT’s optimized code (which we assume is correct) to compute a “known good” FFT for
comparison.

. When writing your FFT code for higher values of N, you may want to leverage the code

you've already written. For example, fft8 could split the input into odd/even parts and then
call fft4 twice. Similarly, fft4 could then split its input into odd/even parts and then call fft2
twice. It is possible to implement these sort of functionality with recursive function calls, but
this is an advanced concept and is not required.

7 Laboratory Report and Grading

See Laboratory Assignment 2.

7.1

Specific Items to Discuss in Your Report

Your report should include, at a minimum, the following results:

1. Average cycles (exclusive and inclusive) of your DFT function with and without compiler

optimization for N = 2,4,8,16, 32,

Average cycles (exclusive and inclusive) of your FFT function with and without compiler
optimization for N = 2,4,8,16, 32,

Average cycles (exclusive and inclusive) of TT’s optimized FFT function (sum of all three
functions required to fully implement the FFT) with and without compiler optimization for
N =2,4,8,16,32,

Do your profiling results follow the predicted trends of O(N?) and O(N logy(N))? How does your
FFT code compare to TI's optimized routines, with and without compiler optimization? Your
report should also discuss any special tricks that you used to implement the FFT.

