
TMS320C6000
Code Composer Studio

Tutorial

Literature Number: SPRU301C
February 2000
Printed on Recycled Paper

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserves the right to make changes to their products or to
discontinue any product or service without notice, and advises customers to obtain the latest version of
relevant information to verify, before placing orders, that the information being relied on is current and
complete. All products are sold subject to the terms and conditions of sale at the time of order
acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale
in accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the
extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is
not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL
RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE
(“CRITICAL APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED,
AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR
SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH
APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER’S RISK.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or
represent that any license, either express or implied, is granted under any patent right, copyright, mask
work right, or other intellectual property right of TI covering or relating to any combination, machine, or
process in which such semiconductor products or services might be or are used. TI’s publication of
information regarding any third party’s products or services does not constitute TI’s approval, warranty
or endorsement thereof.

Copyright © 2000, Texas Instruments Incorporated

This is a draft version printed from file: tut_pref.fm on 2/26/0
Preface

Read This First

About This Manual

Code Composer Studio speeds and enhances the development process for
programmers who create and test real-time, embedded signal processing
applications. Code Composer Studio extends the capabilities of the Code
Composer Integrated Development Environment (IDE) to include full
awareness of the DSP target by the host and real-time analysis tools.

This tutorial assumes that you have Code Composer Studio, which includes
the TMS320C6000 code generation tools along with the APIs and plug-ins for
both DSP/BIOS and RTDX. This manual also assumes that you have
installed a target board in your PC containing the DSP device.

If you only have Code Composer Studio Simulator and the code generation
tools, but not the complete Code Composer Studio, you can perform the
steps in Chapter 2 and Chapter 4.

If you are using the DSP simulator instead of a board, you are also limited to
performing the steps in Chapter 2 and Chapter 4.

This tutorial introduces you to some of the key features of Code Composer
Studio. The intention is not to provide an exhaustive description of every
feature. Instead, the objective is to prepare you to begin DSP development
with Code Composer Studio.
iii

 Notational Conventions
Notational Conventions

This document uses the following conventions:

❏ The TMS320C6000 core is also referred to as ’C6000.

❏ Code Composer Studio generates files with extensions of .s62 and .h62.
These files can also be used with both the TMS320C6201 and the
TMS320C6701. DSP/BIOS does not use the floating-point instructions
that are supported by the TMS320C6701.

❏ Program listings, program examples, and interactive displays are shown
in a special typeface . Examples use a bold version of the special
typeface for emphasis; interactive displays use a bold version of the
special typeface to distinguish commands that you enter from items that
the system displays (such as prompts, command output, error messages,
etc.).

Here is a sample program listing:

Void copy(HST_Obj *input, HST_Obj *output)
{
 PIP_Obj *in, *out;
 Uns *src, *dst;
 Uns size;

❏ In syntax descriptions, the instruction, command, or directive is in a bold
typeface and parameters are in an italic typeface. Portions of a syntax
that are in bold should be entered as shown; portions of a syntax that are
in italics describe the type of information that should be entered. Syntax
that is entered on a command line is centered. Syntax that is used in a
text file is left-justified.

❏ Square brackets ([]) identify an optional parameter. If you use an
optional parameter, you specify the information within the brackets.
Unless the square brackets are in a bold typeface, do not enter the
brackets themselves.
iv

Related Documentation from Texas Instruments
Related Documentation from Texas Instruments
The following books describe the devices, related support tools, and Code
Composer Studio.

Most of these documents are available in Adobe Acrobat format after you
install Code Composer Studio. To open a document, from the Windows Start
menu, choose Programs−>Code Composer Studio ’C6000−>Documentation.

To obtain a printed copy of any of these documents, call the Texas
Instruments Literature Response Center at (800) 477-8924. When ordering,
please identify the book by its title and literature number.

Code Composer Studio User’s Guide (literature number SPRU328)
explains how to use the Code Composer Studio development environment
to build and debug embedded real-time DSP applications.

TMS320C6000 DSP/BIOS User’s Guide (literature number SPRU303a)
describes how to use DSP/BIOS tools and APIs to analyze embedded
real-time DSP applications.

TMS320C6000 DSP/BIOS API Reference Guide (literature number
SPRU403) describes how to use DSP/BIOS tools and APIs to analyze
embedded real-time DSP applications.

TMS320C6000 Assembly Language Tools User's Guide (literature
number SPRU186) describes the assembly language tools (assembler,
linker, and other tools used to develop assembly language code),
assembler directives, macros, common object file format, and symbolic
debugging directives for the ’C6000 generation of devices.

TMS320C6000 Optimizing C Compiler User's Guide (literature number
SPRU187) describes the ’C6000 C compiler and the assembly optimizer.
This C compiler accepts ANSI standard C source code and produces
assembly language source code for the ’C6000 generation of devices.
The assembly optimizer helps you optimize your assembly code.

TMS320C62x/C67x Programmer's Guide (literature number SPRU198)
describes ways to optimize C and assembly code for the
TMS320C62x/C67x DSPs and includes application program examples.

TMS320C62x/C67x CPU and Instruction Set Reference Guide (literature
number SPRU189) describes the 'C62x/C67x CPU architecture,
instruction set, pipeline, and interrupts for these digital signal
processors.

TMS320C6201/C6701 Peripherals Reference Guide (literature number
SPRU190) describes common peripherals available on the
TMS320C6201/’C6701 digital signal processors. This book includes
information on the internal data and program memories, the external
memory interface (EMIF), the host port, multichannel buffered serial
Read This First v

 Related Documentation
ports, direct memory access (DMA), clocking and phase-locked loop
(PLL), and the power-down modes.

TMS320C62x Technical Brief (literature number SPRU197) gives an
introduction to the digital signal processor, development tools, and
third-party support.

TMS320C6201 Digital Signal Processor Data Sheet (literature number
SPRS051) describes the features of the TMS320C6201 and provides
pinouts, electrical specifications, and timings for the device.

TMS320C6701 Digital Signal Processor Data Sheet (literature number
SPRS067) describes the features of the TMS320C6701 and provides
pinouts, electrical specifications, and timings for the device.

TMS320 DSP Designer's Notebook: Volume 1 (literature number
SPRT125) presents solutions to common design problems using 'C2x,
'C3x, 'C4x, 'C5x, and other TI DSPs.

Related Documentation

You can use the following books to supplement this user's guide:

American National Standard for Information Systems-Programming
Language C X3.159-1989 , American National Standards Institute.

The C Programming Language (second edition) , by Brian W. Kernighan
and Dennis M. Ritchie. Prentice Hall Press, 1988.

Programming in ANSI C , Kochan, Steve G. Sams Publishing, 1994.

C: A Reference Manual , Harbison, Samuel and Guy Steele. Prentice Hall
Computer Books, 1994.

Trademarks

MS-DOS, Windows, and Windows NT are trademarks of Microsoft
Corporation. Other Microsoft products referenced herein are either
trademarks or registered trademarks of Microsoft.

The Texas Instruments logo and Texas Instruments are registered
trademarks of Texas Instruments. Trademarks of Texas Instruments include:
TI, XDS, Code Composer Studio, Probe Point, Code Explorer, DSP/BIOS,
RTDX, Online DSP Lab, BIOSuite, and SPOX.

All other brand or product names are trademarks or registered trademarks of
their respective companies or organizations.
vi

This is a draft version printed from file: tutorialtoc.fm on 2/26/0
Contents

1 Code Composer Studio Overview .1-1
This chapter provides an overview of the Code Composer Studio software development process,
the components of Code Composer Studio, and the files and variables used by Code Composer
Studio.
1.1 Code Composer Studio Development .1-2
1.2 Code Generation Tools .1-4
1.3 Code Composer Studio Integrated Development Environment1-6

1.3.1 Program Code Editing Features. .1-6
1.3.2 Application Building Features. .1-7
1.3.3 Application Debugging Features .1-7

1.4 DSP/BIOS Plug-ins. .1-8
1.4.1 DSP/BIOS Configuration .1-8
1.4.2 DSP/BIOS API Modules .1-10

1.5 Hardware Emulation and Real-Time Data Exchange. .1-12
1.6 Third-Party Plug-ins .1-14
1.7 Code Composer Studio Files and Variables. .1-15

1.7.1 Installation Folders .1-15
1.7.2 File Extensions .1-16
1.7.3 Environment Variables .1-17
1.7.4 Increasing DOS Environment Space .1-17

2 Developing a Simple Program .2-1
This chapter introduces Code Composer Studio and shows the basic process used to create,
build, debug, and test programs.
2.1 Creating a New Project. .2-2
2.2 Adding Files to a Project. .2-3
2.3 Reviewing the Code .2-4
2.4 Building and Running the Program. .2-5
2.5 Changing Program Options and Fixing Syntax Errors .2-7
2.6 Using Breakpoints and the Watch Window .2-9
2.7 Using the Watch Window with Structures. .2-11
2.8 Profiling Code Execution Time .2-12
2.9 Things to Try. .2-14
2.10 Learning More .2-14
vii

 Contents
3 Developing a DSP/BIOS Program . 3-1
This chapter introduces DSP/BIOS and shows how to create, build, debug, and test programs that
use DSP/BIOS.
3.1 Creating a Configuration File . 3-2
3.2 Adding DSP/BIOS Files to a Project . 3-4
3.3 Testing with Code Composer Studio. 3-6
3.4 Profiling DSP/BIOS Code Execution Time . 3-8
3.5 Things to Try . 3-10
3.6 Learning More . 3-10

4 Testing Algorithms and Data from a File . 4-1
This chapter shows the process for creating and testing a simple algorithm and introduces addi-
tional Code Composer Studio features.
4.1 Opening and Examining the Project . 4-2
4.2 Reviewing the Source Code . 4-4
4.3 Adding a Probe Point for File I/O . 4-6
4.4 Displaying Graphs. 4-9
4.5 Animating the Program and Graphs . 4-10
4.6 Adjusting the Gain. 4-12
4.7 Viewing Out-of-Scope Variables . 4-13
4.8 Using a GEL File . 4-15
4.9 Adjusting and Profiling the Processing Load. 4-16
4.10 Things to Try . 4-18
4.11 Learning More . 4-18

5 Debugging Program Behavior . 5-1
This chapter introduces techniques for debugging a program and several DSP/BIOS plug-ins and
modules.
5.1 Opening and Examining the Project . 5-2
5.2 Reviewing the Source Code . 5-3
5.3 Modifying the Configuration File . 5-6
5.4 Viewing Thread Execution with the Execution Graph . 5-10
5.5 Changing and Viewing the Load . 5-12
5.6 Analyzing Thread Statistics. 5-15
5.7 Adding Explicit STS Instrumentation. 5-17
5.8 Viewing Explicit Instrumentation . 5-18
5.9 Things to Try . 5-20
5.10 Learning More . 5-20

6 Analyzing Real-Time Behavior . 6-1
This chapter introduces techniques for analyzing and correcting real-time program behavior.
6.1 Opening and Examining the Project . 6-2
6.2 Modifying the Configuration File . 6-3
6.3 Reviewing the Source Code Changes . 6-5
6.4 Using the RTDX Control to Change the Load at Run Time . 6-7
6.5 Modifying Software Interrupt Priorities . 6-11
viii

Contents
6.6 Things to Try. .6-12
6.7 Learning More .6-13

7 Connecting to I/O Devices .7-1
This chapter introduces RTDX and DSP/BIOS techniques for implementing I/O.
7.1 Opening and Examining the Project .7-2
7.2 Reviewing the C Source Code .7-3
7.3 Reviewing the Signalprog Application .7-6
7.4 Running the Application .7-7
7.5 Modifying the Source Code to Use Host Channels and Pipes7-10
7.6 More about Host Channels and Pipes .7-12
7.7 Adding Channels and an SWI to the Configuration File .7-13
7.8 Running the Modified Program. .7-17
7.9 Learning More .7-17
Contents ix

x

Chapter 1

Code Composer Studio Overview

This chapter provides an overview of the Code Composer Studio software
development process, the components of Code Composer Studio, and the
files and variables used by Code Composer Studio.

Code Composer Studio speeds and enhances the development process for
programmers who create and test real-time, embedded signal processing
applications. It provides tools for configuring, building, debugging, tracing,
and analyzing programs.

 1.1 Code Composer Studio Development . 1–2

1.2 Code Generation Tools . 1–4

1.3 Code Composer Studio Integrated Development Environment . . . 1–6

1.4 DSP/BIOS Plug-ins . 1–8

1.5 Hardware Emulation and Real-Time Data Exchange 1–12

1.6 Third-Party Plug-ins . 1–14

1.7 Code Composer Studio Files and Variables 1–15

Topic Page
1-1

Code Composer Studio Development
1.1 Code Composer Studio Development

Code Composer Studio extends the basic code generation tools with a set of
debugging and real-time analysis capabilities. Code Composer Studio
supports all phases of the development cycle shown here:

In order to use this tutorial, you should have already done the following:

❏ Install target board and driver software . Follow the installation
instructions provided with the board. If you are using the simulator or a
target board whose driver software is provided with this product you can
perform the steps in the Installation Guide for this product.

❏ Install Code Composer Studio . Follow the installation instructions. If you
have Code Composer Studio Simulator and the TMS320C6000 code
generation tools, but not the full Code Composer Studio, you can perform
the steps in Chapter 2 and in Chapter 4.

❏ Run Code Composer Studio Setup . The setup program allows Code
Composer Studio to use the drivers installed for the target board.

Design Debug AnalyzeCode & bui ld

conceptual
p lanning

create project,
wr i te source code,
configuration f i le

syntax checking,
probe points,
logging, etc.

real- t ime
debugging,

statistics, tracing
1-2

Code Composer Studio Development
Code Composer Studio includes the following components:

❏ TMS320C6000 code generation tools: see section 1.2

❏ Code Composer Studio Integrated Development Environment (IDE): see
section 1.3

❏ DSP/BIOS plug-ins and API: see section 1.4

❏ RTDX plug-in, host interface, and API: see section 1.5

These components work together as shown here:

TargetHost

T arge t hardw are

D SP app lica tion p rogram

DSP

Code Com poser Stud io

JT AG
R T D X

C ode C om poser debugger

D SP /B IO S
plug-ins

R TD X
plug-in

3rd party
p lug-ins

c fg .cm d
c fg .s6 x
c fg .h 6 x

.cdb
(C o n fig

d a tab a se)

C om pile r,
assem b le r,

lnker...

C ode
genera tion

too ls
C ode C om poser pro ject

.asm.h.c

C ode C om poser ed ito r

source file s

D SP /B IO S A PI

O LE
app lica tion

using R T D X

C onfigura tion
Too l

execu table

D SP/B IO S

H ost em ula tion support
Code Composer Studio Overview 1-3

Code Generation Tools
1.2 Code Generation Tools

The code generation tools provide the foundation for the development
environment provided by Code Composer Studio. Figure 1–1 shows a typical
software development flow. The most common software development path for
C language programs is shaded. Other portions are peripheral functions that
enhance the development process.

Figure 1–1 Software Development Flow

Assembler

Linker

Macro
library

Library of
object
files

EPROM
programmer

Assembler
source

COFF
object
files

Archiver

Macro
source

files

Archiver

C compiler

Library-build
utility

Debugging
tools

Run-time-
support
library

TMS320C6000

C
source

files

Assembly-
optimized

file

Assembly
optimizer

Linear
assembly

Hex conversion
utility

Cross-reference
lister

Executable
COFF

file

Absolute
lister
1-4

Code Generation Tools
The following list describes the tools shown in Figure 1-1:

❏ The C compiler accepts C source code and produces assembly
language source code. See the TMS320C6000 Optimizing C Compiler
User’s Guide for details.

❏ The assembler translates assembly language source files into machine
language object files. The machine language is based on common object
file format (COFF). See the TMS320C6000 Assembly Language Tools
User’s Guide for details.

❏ The assembly optimizer allows you to write linear assembly code
without being concerned with the pipeline structure or with assigning
registers. It assigns registers and uses loop optimization to turn linear
assembly into highly parallel assembly that takes advantage of software
pipelining. See the TMS320C6000 Optimizing C Compiler User’s Guide
and the TMS320C62x/C67x Programmer's Guide for details.

❏ The linker combines object files into a single executable object module.
As it creates the executable module, it performs relocation and resolves
external references. The linker accepts relocatable COFF object files and
object libraries as input. See the TMS320C6000 Optimizing C Compiler
User’s Guide and the TMS320C6000 Assembly Language Tools User’s
Guide for details.

❏ The archiver allows you to collect a group of files into a single archive
file, called a library. The archiver also allows you to modify a library by
deleting, replacing, extracting, or adding members. See the
TMS320C6000 Assembly Language Tools User’s Guide for details.

❏ You can use the library-build utility to build your own customized
run-time-support library. See the TMS320C6000 Optimizing C Compiler
User’s Guide for details.

❏ The run-time-support libraries contain ANSI standard run-time-support
functions, compiler-utility functions, floating-point arithmetic functions,
and I/O functions that are supported by the C compiler. See the
TMS320C6000 Optimizing C Compiler User’s Guide for details.

❏ The hex conversion utility converts a COFF object file into TI-Tagged,
ASCII-hex, Intel, Motorola-S, or Tektronix object format. You can
download the converted file to an EPROM programmer. See the
TMS320C6000 Assembly Language Tools User’s Guide for details.

❏ The cross-reference lister uses object files to cross-reference symbols,
their definitions, and their references in the linked source files. See the
TMS320C6000 Assembly Language Tools User’s Guide for details.

❏ The absolute lister accepts linked object files as input and creates .abs
files as output. You assemble the .abs files to produce a listing that
contains absolute addresses rather than relative addresses. Without the
absolute lister, producing such a listing would be tedious and require
many manual operations.
Code Composer Studio Overview 1-5

Code Composer Studio Integrated Development Environment
1.3 Code Composer Studio Integrated Development Environment

The Code Composer Studio Integrated Development Environment (IDE) is
designed to allow you to edit, build, and debug DSP target programs.

1.3.1 Program Code Editing Features

Code Composer Studio allows you to edit C and assembly source code. You
can also view C source code with the corresponding assembly instructions
shown after the C statements.

The integrated editor provides support for the following activities:

❏ Highlighting of keywords, comments, and strings in color

❏ Marking C blocks in parentheses and braces, finding matching or next
parenthesis or brace

❏ Increasing and decreasing indentation level, customizable tab stops

❏ Finding and replacing in one or more files, find next and previous, quick
search

❏ Undoing and redoing multiple actions

❏ Getting context-sensitive help

❏ Customizing keyboard command assignments
1-6

Code Composer Studio Integrated Development Environment
1.3.2 Application Building Features

Within Code Composer Studio, you create
an application by adding files to a project.
The project file is used to build the
application. Files in a project can include
C source files, assembly source files,
object files, libraries, linker command files,
and include files.

You can use a window to specify the
options you want to use when compiling,
assembling, and linking a project.

Using a project, Code Composer Studio
can create a full build or an incremental
build and can compile individual files. It
can also scan files to build an include file
dependency tree for the entire project.

Code Composer Studio’s build facilities can be used as an alternative to
traditional makefiles. If you want to continue using traditional makefiles for
your project, Code Composer Studio also permits that.

1.3.3 Application Debugging Features

Code Composer Studio provides support for the following debugging
activities:

❏ Setting breakpoints with a number of stepping options

❏ Automatically updating windows at breakpoints

❏ Watching variables

❏ Viewing and editing memory and registers

❏ Viewing the call stack

❏ Using Probe Point tools to stream data to and from the target and to
gather memory snapshots

❏ Graphing signals on the target

❏ Profiling execution statistics

❏ Viewing disassembled and C instructions executing on target

Code Composer Studio also provides the GEL language, which allows
developers to add functions to the Code Composer Studio menus for
commonly performed tasks.
Code Composer Studio Overview 1-7

DSP/BIOS Plug-ins
1.4 DSP/BIOS Plug-ins

During the analysis phase of the software development cycle, traditional
debugging features are ineffective for diagnosing subtle problems that arise
from time-dependent interactions.

The Code Composer Studio plug-ins provided with DSP/BIOS support such
real-time analysis. You can use them to visually probe, trace, and monitor a
DSP application with minimal impact on real-time performance. For example,
the Execution Graph shown below displays the sequence in which various
program threads execute. (Threads is a general term used to refer to any
thread of execution. For example, hardware ISRs, software interrupts, tasks,
idle functions, and periodic functions are all threads.)

The DSP/BIOS API provides the following real-time analysis capabilities:

❏ Program tracing . Displaying events written to target logs and reflecting
dynamic control flow during program execution

❏ Performance monitoring . Tracking statistics that reflect the use of target
resources, such as processor loading and thread timing

❏ File streaming . Binding target-resident I/O objects to host files

DSP/BIOS also provides a priority-based scheduler that you can choose to
use in your applications. This scheduler supports periodic execution of
functions and multi-priority threading.

1.4.1 DSP/BIOS Configuration

You can create configuration files in the Code Composer Studio environment
that define objects used by the DSP/BIOS API. This file also simplifies
memory mapping and hardware ISR vector mapping, so you may want to use
it even if you are not using the DSP/BIOS API.

A configuration file has two roles:

❏ It lets you set global run-time parameters.
1-8

DSP/BIOS Plug-ins
❏ It serves as a visual editor for creating and setting properties for run-time
objects that are used by the target application’s DSP/BIOS API calls.
These objects include software interrupts, I/O pipes, and event logs.

When you open a configuration file in Code Composer Studio, a window like
the following one appears.

Unlike systems that create objects at run time with API calls that require extra
target overhead (especially code space), all DSP/BIOS objects are statically
configured and bound into an executable program image. In addition to
minimizing the target memory footprint by eliminating run-time code and
optimizing internal data structures, this static configuration strategy detects
errors earlier by validating object properties before program execution.

You can use a configuration file in both programs that use the DSP/BIOS API
and in programs that do not. A configuration file simplifies ISR vector and
memory section addressing for all programs.

Saving a configuration file generates several files that you must link with your
application. See section 1.7.2, page 1–16 for details about these files.
Code Composer Studio Overview 1-9

DSP/BIOS Plug-ins
1.4.2 DSP/BIOS API Modules

Unlike traditional debugging, which is external to the executing program, the
DSP/BIOS features require the target program to be linked with certain
DSP/BIOS API modules.

A program can use one or more DSP/BIOS modules by defining DSP/BIOS
objects in a configuration file, declaring these objects as external, and calling
DSP/BIOS API functions in the source code. Each module has a separate C
header file or assembly macro file you can include in your program. This
allows you to minimize the program size in a program that uses some, but not
all, DSP/BIOS modules.

The DSP/BIOS API calls (in C and assembly) are optimized to use minimal
resources on your target DSP.

The DSP/BIOS API is divided into the following modules. All the API calls
within a module begin with the letter codes shown here.

❏ ATM. This module provides atomic functions that can be used to
manipulate shared data.

❏ C62. This module provides DSP-specific functions to manage interrupts.

❏ CLK . The on-chip timer module controls the on-chip timer and provides
a logical 32-bit real-time clock with a high-resolution interrupt rate as fine
as the resolution of the on-chip timer register (4 instruction cycles) and a
low-resolution interrupt rate as long as several milliseconds or longer.

❏ DEV. This module allows you to create and use your own device drivers.

❏ HST. The host input/output module manages host channel objects, which
allow an application to stream data between the target and the host. Host
channels are statically configured for input or output.

❏ HWI. The hardware interrupt module provides support for hardware
interrupt routines. In a configuration file, you can assign functions that run
when hardware interrupts occur.

❏ IDL. The idle function module manages idle functions, which are run in a
loop when the target program has no higher priority functions to perform.

❏ LCK . The lock module manages shared global resources, and is used to
arbitrate access to this resource among several competing tasks.

❏ LOG. The log module manages LOG objects, which capture events in
real time while the target program executes. You can use system logs or
define your own logs. You can view messages in these logs in real time
with Code Composer Studio.

❏ MBX. The mailbox module manages objects that pass messages from
one task to another. Tasks block when waiting for a mailbox message.
1-10

DSP/BIOS Plug-ins
❏ MEM. The memory module allows you to specify the memory segments
required to locate the various code and data sections of a target program.

❏ PIP. The data pipe module manages data pipes, which are used to buffer
streams of input and output data. These data pipes provide a consistent
software data structure you can use to drive I/O between the DSP device
and other real-time peripheral devices.

❏ PRD. The periodic function module manages periodic objects, which
trigger cyclic execution of program functions. The execution rate of these
objects can be controlled by the clock rate maintained by the CLK module
or by regular calls to PRD_tick, usually in response to hardware interrupts
from peripherals that produce or consume streams of data.

❏ QUE. The queue module manages data queue structures.

❏ RTDX. Real-Time Data Exchange permits the data to be exchanged
between the host and target in real time, and then to be analyzed and
displayed on the host using any OLE automation client. See section 1.5
for more information.

❏ SEM. The semaphore module manages counting semaphores that may
be used for task synchronization and mutual exclusion.

❏ SIO. The stream module manages objects that provide efficient real-time
device-independent I/O.

❏ STS. The statistics module manages statistics accumulators, which store
key statistics while a program runs. You can view these statistics in real
time with Code Composer Studio.

❏ SWI. The software interrupt module manages software interrupts, which
are patterned after hardware interrupt service routines (ISRs). When a
target program posts an SWI object with an API call, the SWI module
schedules execution of the corresponding function. Software interrupts
can have up to 15 priority levels; all levels are below the priority level of
hardware ISRs.

❏ SYS. The system services module provides general-purpose functions
that perform basic system services, such as halting program execution
and printing formatted text.

❏ TRC. The trace module manages a set of trace control bits which control
the real-time capture of program information through event logs and
statistics accumulators. There are no TRC objects, so the trace module
is not listed in configuration files.

❏ TSK. The task module manages task threads, which are blocking threads
with lower priority than software interrupts.

For details, see the online help or the TMS320C6000 DSP/BIOS User’s
Guide and TMS320C6000 DSP/BIOS API Reference Guide.
Code Composer Studio Overview 1-11

Hardware Emulation and Real-Time Data Exchange
1.5 Hardware Emulation and Real-Time Data Exchange

TI DSPs provide on-chip emulation support that enables Code Composer
Studio to control program execution and monitor real-time program activity.
Communication with this on-chip emulation support occurs via an enhanced
JTAG link. This link is a low-intrusion way of connecting into any DSP system.
An emulator interface, like the TI XDS510, provides the host side of the JTAG
connection. Evaluation boards like the C6x EVM provide an on-board JTAG
emulator interface for convenience.

The on-chip emulation hardware provides a variety of capabilities:

❏ Starting, stopping, or resetting the DSP

❏ Loading code or data into the DSP

❏ Examining the registers or memory of the DSP

❏ Hardware instruction or data-dependent breakpoints

❏ A variety of counting capabilities including cycle-accurate profiling

❏ Real-time data exchange (RTDX) between the host and the DSP

Code Composer Studio provides built-in support for these on-chip
capabilities. In addition, RTDX capability is exposed through host and DSP
APIs, allowing for bi-directional real-time communications between the host
and DSP.

RTDX provides real-time, continuous visibility into the way DSP applications
operate in the real world. RTDX allows system developers to transfer data
between a host computer and DSP devices without stopping their target
application. The data can be analyzed and visualized on the host using any
OLE automation client. This shortens development time by giving designers
a realistic representation of the way their systems actually operate.
1-12

Hardware Emulation and Real-Time Data Exchange
RTDX consists of both target and host components. A small RTDX software
library runs on the target DSP. The designer's DSP application makes
function calls to this library’s API in order to pass data to or from it. This library
uses the on-chip emulation hardware to move data to or from the host
platform via an enhanced JTAG interface. Data transfer to the host occurs in
real time while the DSP application is running.

On the host platform, an RTDX library operates in conjunction with Code
Composer Studio. Display and analysis tools can communicate with RTDX
via an easy-to-use COM API to obtain the target data or send data to the DSP
application. Designers may use standard software display packages, such as
National Instruments' LabVIEW, Quinn-Curtis' Real-Time Graphics Tools, or
Microsoft Excel. Alternatively, designers can develop their own Visual Basic
or Visual C++ applications.

RTDX can also record real-time data and play it back for non-real-time
analysis. The following sample display features National Instruments’
LabVIEW. On the target a raw signal pattern is run through an FIR filter, and
both the raw and filtered signals are sent to the host via RTDX. On the host
the LabVIEW display obtains the signal data via the RTDX COM API. These
two signals appear on the left half of the display. To confirm that the target’s
FIR filter is operating correctly, power spectrums are produced. The target’s
filtered signal is run through a LabVIEW power spectrum and displayed on
the top right. The target’s raw signal is run through a LabVIEW FIR filter
followed by a LabVIEW power spectrum and displayed on the bottom right.
Comparison of these two power spectrums validates the target FIR filter.

U se r d isp lay

T I d isp lay

T h ird pa rty
d isp lay

C od e C o m pose r

R T D X hos t
lib ra ry E

m
ul

at
io

n

R
T

D
X

 t
ar

ge
t

lib
ra

ry

A
pp

lic
at

io
n

PC TM S320 DSP

RTDX COM API RTDX target API

L ive o r reco rd ed
da ta

JTAG
Code Composer Studio Overview 1-13

Third-Party Plug-ins
RTDX is well-suited for a variety of control, servo, and audio applications. For
example, wireless telecommunications manufacturers can capture the
outputs of their vocoder algorithms to check the implementations of speech
applications. Embedded control systems also benefit. Hard disk drive
designers can test their applications without crashing the drive with improper
signals to the servo motor, and engine control designers can analyze
changing factors like heat and environmental conditions while the control
application is running. For all of these applications, users can select
visualization tools that display information in a way that is most meaningful to
them. Future TI DSPs will enable RTDX bandwidth increases, providing
greater system visibility to an even larger number of applications. For more
information on RTDX, see the RTDX online help available within Code
Composer Studio.

1.6 Third-Party Plug-ins

Third-party software providers can create ActiveX plug-ins that complement
the functionality of Code Composer Studio. A number of third-party plug-ins
are available for a variety of purposes.
1-14

Code Composer Studio Files and Variables
1.7 Code Composer Studio Files and Variables

The following sections provide an overview of the folders that contain the
Code Composer Studio files, the types of files you use, and the environment
variables used by Code Composer Studio.

1.7.1 Installation Folders

The installation process creates the subfolders shown here in the folder
where you install Code Composer Studio (typically c:\ti). Additionally,
subfolders are created in the Windows directory (c:\windows or c:\winnt).

The c:\ti structure contains the following directories:

❏ bin . Various utility programs

❏ c6000\bios . Files used when building programs
that use the DSP/BIOS API

❏ c6000\cgtools . The Texas Instruments code
generation tools

❏ c6000\examples . Code examples

❏ c6000\rtdx . Files for use with RTDX

❏ c6000\tutorial . The examples you use in this
manual

❏ cc\bin . Program files for the Code Composer
Studio environment

❏ cc\gel . GEL files for use with Code Composer Studio

❏ docs . Documentation and manuals in PDF format. If you did not choose
to install the complete documentation, see the CD-ROM for manuals in
PDF format.

❏ myprojects . Location provided for your copies of the tutorial examples
and your project files

The following directory structure is added to the
Windows directory:

❏ ti\drivers . Files for various DSP board drivers

❏ ti\plugins . Plug-ins for use with Code Composer
Studio

❏ ti\uninstall . Files supporting Code Composer Studio software removal
Code Composer Studio Overview 1-15

Code Composer Studio Files and Variables
1.7.2 File Extensions

While using Code Composer Studio, you work with files that have the following
file-naming conventions:

❏ project.mak . Project file used by Code Composer Studio to define a
project and build a program

❏ program.c . C program source file(s)

❏ program.asm . Assembly program source file(s)

❏ filename.h . Header files for C programs, including header files for
DSP/BIOS API modules

❏ filename.lib . Library files

❏ project.cmd . Linker command files

❏ program.obj . Object files compiled or assembled from your source files

❏ program.out . An executable program for the target (fully compiled,
assembled, and linked). You can load and run this program with Code
Composer Studio.

❏ project.wks . Workspace file used by Code Composer Studio to store
information about your environment settings

❏ program.cdb . Configuration database file created within Code Composer
Studio. This file is required for applications that use the DSP/BIOS API,
and is optional for other applications. The following files are also
generated when you save a configuration file:

■ programcfg.cmd . Linker command file
■ programcfg.h62 . Header file
■ programcfg.s62 . Assembly source file

Although these files have extensions of .s62 and .h62, they can also be
used with the TMS320C6701. DSP/BIOS does not need to use the
floating-point instructions supported by the TMS320C6701, therefore
only one version of the software is required to support both DSPs.
1-16

Code Composer Studio Files and Variables
1.7.3 Environment Variables

The installation procedure defines the following variables in your
autoexec.bat file (for Windows 95 and 98) or as environment variables (for
Windows NT):

Table 1–1 Environment Variables

1.7.4 Increasing DOS Environment Space

If you are using Windows 95, you may need to increase your DOS shell
environment space to support the environment variables required to build
Code Composer Studio applications.

Add the following line to the config.sys file and then restart your computer:

shell=c:\windows\command.com /e:4096 /p

Variable Description

C6X_A_DIR A search list used by the assembler to find library and include
files for DSP/BIOS, RTDX, and the code generation tools. See
the TMS320C6000 Assembly Language Tools User’s Guide for
details.

C6X_C_DIR A search list used by the compiler and linker to find library and
include files for DSP/BIOS, RTDX, and the code generation
tools. See the TMS320C6000 Optimizing C Compiler User’s
Guide for details.

PATH A list of folders is added to your PATH definition. The default is to
add the c:\ti\c6000\cgtools\bin and c:\ti\bin folders.
Code Composer Studio Overview 1-17

1-18

Chapter 2

Developing a Simple Program

This chapter introduces Code Composer Studio and shows the basic process
used to create, build, debug, and test programs.

In this chapter, you create and test a simple program that displays a hello
world message.

This tutorial introduces you to some of the key features of Code Composer
Studio. The intention is not to provide an exhaustive description of every
feature. Instead, the objective is to prepare you to begin DSP software
development with Code Composer Studio.

In order to use this tutorial, you should have already installed Code Composer
Studio according to the installation instructions. It is recommended that you
use Code Composer Studio with a target board rather than with the simulator.
If you have Code Composer and the Code Generation Tools, but not Code
Composer Studio, or if you are using the simulator, you can perform the steps
in Chapter 2 and Chapter 4 only.

2.1 Creating a New Project . 2–2

2.2 Adding Files to a Project . 2–3

2.3 Reviewing the Code . 2–4

2.4 Building and Running the Program . 2–5

2.5 Changing Program Options and Fixing Syntax Errors 2–7

2.6 Using Breakpoints and the Watch Window. 2–9

2.7 Using the Watch Window with Structures. 2–11

2.8 Profiling Code Execution Time . 2–12

2.9 Things to Try . 2–14

2.10 Learning More . 2–14

Topic Page
2-1

Creating a New Project
2.1 Creating a New Project

In this chapter, you create a project with Code Composer Studio and add
source code files and libraries to the project. Your project uses standard C
library functions to display a hello world message.

1) If you installed Code Composer Studio in c:\ti, create a folder called
hello1 in the c:\ti\myprojects folder. (If you installed elsewhere, create a
folder within the myprojects folder in the location where you installed.)

2) Copy all files from the c:\ti\c6000\tutorial\hello1 folder to this new folder.

3) From the Windows Start menu, choose Programs→Code Composer
Studio ’C6000→CCStudio. (Or, double-click the Code Composer Studio
icon on your desktop.)

Note: Code Composer Studio Setup
If you get an error message the first time you try to start Code Composer
Studio, make sure you ran Code Composer Setup after installing Code
Composer Studio. If you have a target board other than the ones mentioned
in the instructions provided with the CD-ROM, see the documentation
provided with your target board for the correct I/O port address.

4) Choose the Project→New menu item.

5) In the Save New Project As window, select the working folder you created
and click Open. Type myhello as the filename and click Save. Code
Composer Studio creates a project file called myhello.mak. This file
stores your project settings and references the various files used by your
project.
2-2

Adding Files to a Project
2.2 Adding Files to a Project

1) Choose Project→Add Files to Project. Select hello.c and click Open.

2) Choose Project→Add Files to Project. Select Asm Source Files (*.a*, *.s*)
in the Files of type box. Select vectors.asm and click Open. This file
contains assembly instructions needed to set the RESET interrupt
service fetch packets (ISFPs) to branch to the program’s C entry point,
c_int00. (For more complex programs, you can define additional interrupt
vectors in vectors.asm, or you can use DSP/BIOS as shown in section
3.1, page 3-2 to define all the interrupt vectors automatically.)

3) Choose Project→Add Files to Project. Select Linker Command File
(*.cmd) in the Files of type box. Select hello.cmd and click Open. This file
maps sections to memory.

4) Choose Project→Add Files to Project.
Go to the compiler library folder
(C:\ti\c6000\cgtools\lib). Select Object
and Library Files (*.o*, *.lib) in the
Files of type box. Select rts6201.lib
and click Open. This library provides
run-time support for the target DSP.(If
you are using the TMS320C6701 and
floating point values, select rts6701.lib
instead.)

5) Expand the Project list by clicking the
+ signs next to Project, myhello.mak,
Libraries, and Source. This list is
called the Project View.

Note: Opening Project View

If you do not see the Project View, choose View→Project. Click the File icon
at the bottom of the Project View if the Bookmarks icon is selected.

6) Notice that include files do not yet appear in your Project View. You do not
need to manually add include files to your project, because Code
Composer Studio finds them automatically when it scans for
dependencies as part of the build process. After you build your project,
the include files appear in the Project View.

If you need to remove a file from the project, right click on the file in the Project
View and choose Remove from project in the pop-up menu.
Developing a Simple Program 2-3

Reviewing the Code
When building the program, Code Composer Studio finds files by searching
for project files in the following path order:

❏ The folder that contains the source file.

❏ The folders listed in the Include Search Path for the compiler or
assembler options (from left to right).

❏ The folders listed in the definitions of the C6X_C_DIR (compiler) and
C6X_A_DIR (assembler) environment variables (from left to right). The
C6X_C_DIR environment variable defined by the installation points to the
folder that contains the rts6201.lib file.

2.3 Reviewing the Code

1) Double-click on the HELLO.C file in the Project View. You see the source
code in the right half of the window.

2) You may want to make the window larger so that you can see more of the
source code at once. You can also choose a smaller font for this window
by choosing Option→Font.

/* ======== hello.c ======== */
#include <stdio.h>
#include "hello.h"

#define BUFSIZE 30

struct PARMS str =
{
 2934,
 9432,
 213,
 9432,
 &str
};

/*
 * ======== main ========
 */
void main()
{
#ifdef FILEIO
 int i;
 char scanStr[BUFSIZE];
 char fileStr[BUFSIZE];
 size_t readSize;
 FILE *fptr;
#endif

 /* write a string to stdout */
 puts("hello world!\n");
2-4

Building and Running the Program
#ifdef FILEIO
 /* clear char arrays */
 for (i = 0; i < BUFSIZE; i++) {
 scanStr[i] = 0 /* deliberate syntax error */
 fileStr[i] = 0;
 }

 /* read a string from stdin */
 scanf("%s", scanStr);

 /* open a file on the host and write char array */
 fptr = fopen("file.txt", "w");
 fprintf(fptr, "%s", scanStr);
 fclose(fptr);

 /* open a file on the host and read char array */
 fptr = fopen("file.txt", "r");
 fseek(fptr, 0L, SEEK_SET);
 readSize = fread(fileStr, sizeof(char), BUFSIZE, fptr);
 printf("Read a %d byte char array: %s \n", readSize, fileStr);
 fclose(fptr);
#endif
}

When FILEIO is undefined, this is a simple program that uses the standard
puts() function to display a hello world message. When you define FILEIO (as
you do in section 2.5, page 2-7), this program prompts for a string and prints
it to a file. It then reads the string from the file and prints it and a message
about its length to standard output.

2.4 Building and Running the Program

Code Composer Studio automatically saves changes to the project setup as
you make them. In case you exited from Code Composer Studio after the
previous section, you can return to the point where you stopped working by
restarting Code Composer Studio and using Project→Open.

Note: Resetting the Target DSP

If Code Composer Studio displays an error message that says it cannot
initialize the target DSP, choose the Debug→Reset DSP menu item. If this
does not correct the problem, you may need to run a reset utility provided
with your target board.
Developing a Simple Program 2-5

Building and Running the Program
To build and run the program, follow these steps:

1) Choose Project→Rebuild All or click the (Rebuild All) toolbar button.
Code Composer Studio recompiles, reassembles, and relinks all the files
in the project. Messages about this process are shown in a frame at the
bottom of the window.

2) Choose File→Load Program. Select the program you just rebuilt,
myhello.out, and click Open. (It should be in the c:\ti\myprojects\hello1
folder unless you installed Code Composer Studio elsewhere.) Code
Composer Studio loads the program onto the target DSP and opens a
Dis-Assembly window that shows the disassembled instructions that
make up the program. (Notice that Code Composer Studio also
automatically opens a tabbed area at the bottom of the window to show
output the program sends to stdout.)

3) Click on an assembly instruction in the Dis-Assembly window. (Click on
the actual instruction, not the address of the instruction or the fields
passed to the instruction.) Press the F1 key. Code Composer Studio
searches for help on that instruction. This is a good way to get help on an
unfamiliar assembly instruction.

4) Choose Debug→Run or click the (Run) toolbar button.

Note: Screen Size and Resolution

Depending on the size and resolution of your screen, part of the toolbar
may be hidden by the Build window. To view the entire toolbar, right-click in
the Build window and deselect Allow Docking.

When you run the program, you see the hello world message in the
Stdout tab.
2-6

Changing Program Options and Fixing Syntax Errors
2.5 Changing Program Options and Fixing Syntax Errors

In the previous section, the portion of the program enclosed by the
preprocessor commands (#ifdef and #endif) did not run because FILEIO was
undefined. In this section, you set a preprocessor option with Code
Composer Studio. You also find and correct a syntax error.

1) Choose Project→Options.

2) In the Compiler tab of the Build Options window, select Preprocessor
from the Category list. Type FILEIO in the Define Symbols box. Press the
Tab key.

Notice that the compiler command at the top of the window now includes
the -d option. The code after the #ifdef FILEIO statement in the program
is now included when you recompile the program. (The other options may
vary depending on the DSP board you are using.)
Developing a Simple Program 2-7

Changing Program Options and Fixing Syntax Errors
3) If you are programming for the TMS320C6701 and your program uses
floating point values, go to the Target Version field and select 67xx from
the pull-down list.

4) Click OK to save your new option settings.

5) Choose Project→Rebuild All or click the (Rebuild All) toolbar button.
You need to rebuild all the files whenever the project options change.

6) A message says the program contains compile errors. Click Cancel.
Scroll up in the Build tab area. You see a syntax error message.

7) Double-click on the red text that describes the location of the syntax error.
Notice that the hello.c source file opens, and your cursor is on the
following line:

fileStr[i] = 0;

8) Fix the syntax error in the line above the cursor location. (The semicolon
is missing.) Notice that an asterisk (*) appears next to the filename in the
Edit window's title bar, indicating that the source file has been modified.
The asterisk disappears when the file is saved.

9) Choose File→Save or press Ctrl+S to save your changes to hello.c.

10) Choose Project→Build or click the (Incremental Build) toolbar button.
Code Composer Studio rebuilds files that have been updated.
2-8

Using Breakpoints and the Watch Window
2.6 Using Breakpoints and the Watch Window

When you are developing and testing programs, you often need to check the
value of a variable during program execution. In this section, you use
breakpoints and the Watch Window to view such values. You also use the
step commands after reaching the breakpoint.

1) Choose File→Reload Program.

2) Double-click on the hello.c file in the Project View. You may want to make
the window larger so that you can see more of the source code at once.

3) Put your cursor in the line that says:

fprintf(fptr, "%s", scanStr);

4) Click the (Toggle Breakpoint) toolbar button or press F9. The line is
highlighted in magenta. (If you like, you can change this color using
Option→Color.)

5) Choose View→Watch Window. A separate area in the lower-right corner
of the Code Composer Studio window appears. At run time, this area
shows the values of watched variables.

6) Right-click on the Watch Window area and choose Insert New
Expression from the pop-up list.

7) Type *scanStr as the Expression and click OK.

8) Notice that *scanStr is listed in the Watch Window but is undefined. This
is because the program is currently not running in the main() function
where this variable is declared locally.

9) Choose Debug→Run or press F5.
Developing a Simple Program 2-9

Using Breakpoints and the Watch Window
10) At the prompt, type goodbye and click OK. Notice that the Stdout tab
shows the input text in blue.

Also notice that the Watch Window now shows the value of *scanStr.

After you type an input string, the program runs and stops at the
breakpoint. The next line to be executed is highlighted in yellow.

11) Click the (Step Over) toolbar button or press F10 to step over the call
to fprintf().

12) Experiment with the step commands Code Composer Studio provides:

■ Step Into (F8)

■ Step Over (F10)

■ Step Out (Shift F7)

■ Run to Cursor (Ctrl F10)

13) Click (Run) or press F5 to finish running the program when you have
finished experimenting.
2-10

Using the Watch Window with Structures
2.7 Using the Watch Window with Structures

In addition to watching the value of a simple variable, you can watch the
values of the elements of a structure.

1) Right-click on the Watch Window area and choose Insert New
Expression from the pop-up list.

2) Type str as the Expression and click OK. A line that says +str = {...}

appears in the Watch Window. The + sign indicates that this is a structure.
Recall from section 2.3, page 2-4 that a structure of type PARMS was
declared globally and initialized in hello.c. The structure type is defined in
hello.h.

3) Click once on the + sign. Code Composer Studio expands this line to list
all the elements of the structure and their values. (The address shown for
Link may vary.)

4) Double-click on any element in the structure to open the Edit Variable
window for that element.

5) Change the value of the variable and click OK. Notice that the value
changes in the Watch Window. The value also changes color to indicate
that you have changed it manually.

6) Select the str variable in the Watch Window. Right-click in the Watch
Window and choose Remove Current Expression from the pop-up list.
Repeat this step for all expressions in the Watch Window.

7) Right-click on the Watch Window and choose Hide from the pop-up menu
to hide the window.

8) Choose Debug→Breakpoints. In the Breakpoints tab, click Delete All and
then click OK.
Developing a Simple Program 2-11

Profiling Code Execution Time
2.8 Profiling Code Execution Time

In this section, you use the profiling features of Code Composer Studio to
gather statistics about the execution of the standard puts() function. In section
3.4, page 3-8, you compare these results to the results for using the
DSP/BIOS API to display the hello world message.

1) Choose File→Reload Program.

2) Choose Profiler→Enable Clock. A check mark appears next to this item
in the Profiler menu. This clock counts instruction cycles. It must be
enabled for profile-points to count instruction cycles.

3) Double-click on the hello.c file in the Project View.

4) Choose View→Mixed Source/ASM. Assembly instructions are listed in
gray following each C source code line.

5) Put your cursor in the line that says:

puts("hello world!\n");

6) Click the (Toggle Profile-point) toolbar button. The C source code line
and the first assembly instruction are highlighted in green.

7) Scroll down and put your cursor in the line that says:

for (i = 0; i < BUFSIZE; i++) {

8) Click the (Toggle Profile-point) toolbar button. (Or, right-click on the
code line and choose Toggle Profile Pt from the pop-up menu.)
2-12

Profiling Code Execution Time
Profile-points are handled before the profile-point line is executed. They
report the number of instruction cycles since the previous profile-point or
since the program started running. As a result, the statistics for the
second profile-point report the number of cycles from when puts() started
executing until it finished executing.

9) Choose Profiler→View Statistics. An area appears at the bottom of the
window that displays statistics about the profile-points.

10) Make sure the line numbers are in ascending order. If they are in the
reverse order, click the Location column heading once.

11) Resize this area by dragging its edges so you can see all the columns.

Note: Line Numbers May Vary

Line numbers displayed in this manual may vary from those displayed in the
current release of the software.

12) Click the (Run) toolbar button or press F5 to run the program. Type
an input string in the prompt window.

13) Notice the number of cycles shown for the second profile-point. It should
be about 1600 to 1700 cycles. (The actual numbers shown may vary.)
This is the number of cycles required to execute the call to puts().

The average, total, maximum, and minimum are the same for these
profile-points because these instructions are executed only one time.

Note: Target Halts at Profile-Points

Code Composer Studio temporarily halts the target whenever it reaches a
profile-point. Therefore, the target application may not be able to meet
real-time deadlines when you are using profile-points. (Real-time
monitoring can be performed using RTDX. See section 1.5, page 1-12.)
Developing a Simple Program 2-13

Things to Try
14) Before continuing to the next chapter (after completing section 2.9, page
2-14), perform the following steps to free the resources used in your
profiling session:

■ Go to the Profiler menu and uncheck Enable Clock.

■ Close the Profile Statistics window by right-clicking and choosing
Hide from the pop-up menu.

■ Go to Profiler→Profile-points. Select Delete All and click OK.

■ Go to the View menu and uncheck Mixed Source/ASM.

2.9 Things to Try

To further explore Code Composer Studio, try the following:

❏ In the Build Options window, examine the fields on the Compiler,
Assembler, and Linker tabs. Choose the various Categories to see all the
options. Notice how changing the values in the field affects the command
line shown. You can see the online help to learn about the various
command line switches.

❏ Set some breakpoints. Choose Debug→Breakpoints. In the Breakpoint
type box, notice that you can also set conditional breakpoints that break
only if an expression is true. You can also set a variety of hardware
breakpoints.

2.10 Learning More

To learn more about using Code Composer Studio, see the online help for
Code Composer Studio or the Code Composer Studio User’s Guide (which is
provided as an Adobe Acrobat file).
2-14

Chapter 3

Developing a DSP/BIOS Program

This chapter introduces DSP/BIOS and shows how to create, build, debug,
and test programs that use DSP/BIOS.

In this chapter, you optimize the hello world program you created in Chapter
2 by using DSP/BIOS.

This chapter requires a physical board and cannot be carried out using a
software simulator. Also, this chapter requires the DSP/BIOS components of
Code Composer Studio.

3.1 Creating a Configuration File . 3–2

3.2 Adding DSP/BIOS Files to a Project . 3–4

3.3 Testing with Code Composer Studio. 3–6

3.4 Profiling DSP/BIOS Code Execution Time . 3–8

3.5 Things to Try . 3–10

3.6 Learning More . 3–10

Topic Page
3-1

Creating a Configuration File
3.1 Creating a Configuration File

Another way to implement the hello world program is to use the LOG module
provided with the DSP/BIOS API. You can use the DSP/BIOS API to provide
basic run-time services within your embedded programs. The API modules
are optimized for use on real-time DSPs. Unlike C library calls such as puts(),
DSP/BIOS enables real-time analysis without halting your target hardware.
Additionally, the API code consumes less space and runs faster than C
standard I/O. A program can use one or more DSP/BIOS modules as desired.

In this chapter, you modify the files from Chapter 2 to use the DSP/BIOS API.
(If you skipped Chapter 2, follow the steps in section 2.1, page 2-2 and
section 2.2, page 2-3.)

In order to use the DSP/BIOS API, a program must have a configuration file
that defines the DSP/BIOS objects used by the program. In this section, you
create a configuration file.

1) If you have closed Code Composer Studio, restart it and use
Project→Open to reopen the myhello.mak project in the
c:\ti\myprojects\hello1 folder. (If you installed elsewhere, open the folder
within the myprojects folder in the location where you installed.)

2) Choose File→New→DSP/BIOS Config.

3) Select the template for your DSP board and click OK. (The
TMS320C6000 DSP/BIOS User’s Guide explains how to create a custom
template.)
3-2

Creating a Configuration File
You see a window like the following. You can expand and contract the list
by clicking the + and - symbols on the left. The right side of the window
shows properties of the object you select in the left side of the window.

4) Right-click on the LOG - Event Log Manager and choose Insert LOG from
the pop-up menu. This creates a LOG object called LOG0.

5) Right-click on the name of the LOG0 object and choose Rename from the
pop-up menu. Change the object’s name to trace.

6) Choose File→Save. Move to your working folder (usually
c:\ti\myprojects\hello1) and save this configuration file with the name
myhello.cdb. Saving this configuration actually creates the following files:

■ myhello.cdb . Stores configuration settings

■ myhellocfg.cmd . Linker command file

■ myhellocfg.s62 . Assembly language source file

■ myhellocfg.h62 . Assembly language header file included by
myhellocfg.s62
Developing a DSP/BIOS Program 3-3

Adding DSP/BIOS Files to a Project
Although these files have extensions of .s62 and .h62, they can also be
used with the TMS320C6701. DSP/BIOS does not need to use the
floating-point instructions supported by the TMS320C6701, therefore
only one version of the software is required to support both DSPs. If you
are using the TMS320C6701 with DSP/BIOS, open the Global Settings
property page in the configuration and change the DSP Type property.
This controls the libraries with which the program is linked.

3.2 Adding DSP/BIOS Files to a Project

Recall that the configuration file you made in the previous section actually
resulted in the creation of four new files: myhello.cdb, myhellocfg.cmd,
myhellocfg.s62, and myhellocfg.h62. In this section, you add these files to
your project and remove the files which they replace.

1) Choose Project→Add Files to Project. Select Configuration File (*.cdb) in
the Files of type box. Select the myhello.cdb file and click Open. Notice
that the Project View now contains myhello.cdb in a folder called
DSP/BIOS Config. In addition, the myhellocfg.s62 file is now listed as a
source file. Remember that Code Composer Studio automatically adds
include files (in this case, the myhellocfg.h62 file) to the project when it
scans for dependencies during a project build.

2) The output filename must match the .cdb filename (myhello.out and
myhello.cdb). Choose Project→Options and go to the Linker tab. In the
Output Filename field, verify that myhello.out is the filename and click
OK.

3) Choose Project→Add Files to Project again. Select Linker Command File
(*.cmd) in the Files of type box. Select the myhellocfg.cmd file and click
Open. This causes Code Composer Studio to display the following
warning:

4) Click Yes. This replaces the previous command file (HELLO.CMD) with
the new one that was generated when you saved the configuration.
3-4

Adding DSP/BIOS Files to a Project
5) In the Project View area, right-click on the vectors.asm source file and
choose Remove from project in the pop-up menu. The hardware interrupt
vectors are automatically defined by the DSP/BIOS configuration file.

6) Right-click on the RTS6201.lib library file and remove it from the project.
This library is automatically included by the myhellocfg.cmd file.

7) Double-click on the hello.c program to open it for editing. If the assembly
instructions are shown, choose View→Mixed Source/ASM to hide the
assembly code.

8) Change the source file’s contents to the following. (You can copy and
paste this code from c:\ti\c6000\tutorial\hello2\hello.c if you like.) Make
sure you replace the existing main function (which has the puts() function)
with the main shown below, because puts() and LOG_printf use the same
resources.
/* ======== hello.c ======== */

/* DSP/BIOS header files*/
#include <std.h>
#include <log.h>

/* Objects created by the Configuration Tool */
extern far LOG_Obj trace;

/* ======== main ======== */
Void main()
{
 LOG_printf(&trace, "hello world!");

 /* fall into DSP/BIOS idle loop */
 return;
}

9) Notice the following parts of this code:

a) The code includes the std.h and log.h header files. All programs that
use the DSP/BIOS API must include the std.h file and header files for
any modules the program uses. The log.h header file defines the
LOG_Obj structure and declares the API operations in the LOG
module. The std.h file must be included first. The order of the
remaining modules you include is not important.

b) The code then declares the LOG object you created in the
configuration file.

c) Within the main function, this example calls LOG_printf and passes
it the address of the LOG object (&trace) and the hello world
message.

d) Finally main returns, which causes the program to enter the
DSP/BIOS idle loop. Within this loop, DSP/BIOS waits for software
Developing a DSP/BIOS Program 3-5

Testing with Code Composer Studio
interrupts and hardware interrupts to occur. Chapter 5 through
Chapter 7 explain these types of events.

10) Choose File→Save or press Ctrl+S to save your changes to hello.c.

11) Choose Project→Options. Choose the Preprocessor category. Remove
FILEIO from the Define Symbols box in the Compiler tab. Then click OK.

12) Choose Project→Rebuild All or click the (Rebuild All) toolbar button.

3.3 Testing with Code Composer Studio

Now you can test the program. Since the program writes only one line to a
LOG, there is not much to analyze. Chapter 5 through Chapter 7 show more
ways to analyze program behavior.

1) Choose File→Load Program. Select the program you just rebuilt,
myhello.out, and click Open.

2) Choose Debug→Go Main. A window shows the hello.c file with the first
line of the main function highlighted. The highlighting indicates that
program execution is paused at this location.

3) Choose Tools→DSP/BIOS→Message Log. A Message Log area appears
at the bottom of the Code Composer Studio window.

4) Right-click on the Message Log area and choose Property Page from the
pop-up window.

5) Select trace as the name of the log to monitor and click OK. The default
refresh rate is once per second. (To change refresh rates, choose
Tools→DSP/BIOS→RTA Control Panel. Right-click on the RTA Control
Panel area and choose Property Page. Choose a new refresh rate and
click OK.)

6) Choose Debug→Run or press F5.

The hello world message appears in the Message Log area.

7) Choose Debug→Halt or press Shift F5 to stop the program. After the main
function returns, your program is in the DSP/BIOS idle loop, waiting for
an event to occur. See section 3.5, page 3-10 to learn more about the idle
loop.

8) Close the Message Log by right-clicking and selecting Close. This is
necessary because you will use the Profiler in the next section.
3-6

Testing with Code Composer Studio
9) Choose Tools→RTDX to open the RTDX control window. Select RTDX
Disable from the pull-down list, then right-click on the RTDX area and
select Hide.

Note: Profiling and RTDX Cannot Be Used Together on Some Targets

The DSP/BIOS plug-ins use RTDX for host/target communication. On
some DSP targets (for example, the TMS320C6201) you cannot use both
profiling and RTDX at the same time. Close all tools that uses RTDX, such
as the Message Log and other DSP/BIOS plug-ins, before using profiling.

To ensure that RTDX is disabled, especially after using DSP/BIOS plug-ins,
choose Tools→RTDX to open the RTDX plug-in. Select RTDX Disable from
the pull-down list, then right-click and select Hide.

Conversely, after using profiling, free the profiler resources before using
RTDX, as described in section 2.8, page 2–14.

An error message similar to the following is shown if you attempt to use
RTDX and profiling at the same time:
Developing a DSP/BIOS Program 3-7

Profiling DSP/BIOS Code Execution Time
3.4 Profiling DSP/BIOS Code Execution Time

Earlier, you used the profiling features of Code Composer Studio to find the
number of cycles required to call puts(). Now, you can do the same for the call
to LOG_printf.

1) Choose File→Reload Program.

2) Choose Profiler→Enable Clock. Make sure you see a check mark next to
this item in the Profiler menu.

3) Double-click on the hello.c file in the Project View.

4) Choose View→Mixed Source/ASM. Assembly instructions are listed in
gray following each C source code line.

5) Put your cursor in the line that says:

LOG_printf(&trace, "hello world!");

6) Click the (Toggle Profile-point) toolbar button. This line and the
assembly language instruction that follows it are highlighted in green.

7) Scroll down and put your cursor in the line for the final curly brace of the
program, and click the (Toggle Profile-point) toolbar button.

You might think that you should set the second profile-point on the line
that says return; since that is the last statement in the program.
However, notice that there are no assembly language equivalents shown
until after the curly brace. If you set the profile-point at the line that says
return; , Code Composer Studio automatically corrects the problem at
run time.

8) Choose Profiler→View Statistics.

9) Make sure the line numbers are in ascending order. If they are in the
reverse order, click the Location column heading once.

10) Click the (Run) toolbar button or press F5 to run the program.

11) Notice the number of instruction cycles shown for the second
profile-point. It should be about 36. (The actual numbers shown may
vary.) This is the number of cycles required to execute the call to
LOG_printf.
3-8

Profiling DSP/BIOS Code Execution Time
Calls to LOG_printf are efficient because the string formatting is
performed on the host PC rather than on the target DSP. LOG_printf
takes about 36 instruction cycles compared to about 1700 for puts()
measured at the end of Chapter 2. You can leave calls to LOG_printf in
your code for system status monitoring with very little impact on code
execution.

12) Click (Halt) or press Shift F5 to stop the program.

13) Before proceeding to the next chapter (after completing section 3.5, page
3-10), perform the following steps to free the resources used in your
profiling session:

■ In the Profiler menu, uncheck Enable Clock.

■ Close the Profile Statistics window by right-clicking and choosing
Hide from the pop-up menu.

■ Choose Profiler→Profile-points. Select Delete All and click OK.

■ In the View menu, uncheck Mixed Source/ASM.

■ Close all source and configuration windows.

■ Choose Project→Close to close the project.
Developing a DSP/BIOS Program 3-9

Things to Try
3.5 Things to Try

To explore Code Composer Studio, try the following:

❏ Load myhello.out and put a breakpoint on the line that calls LOG_printf.
Use Debug→Breakpoints to add a breakpoint at IDL_F_loop. (Type
IDL_F_loop in the Location box and click Add.)

Run the program. At the first breakpoint, use View→CPU
Registers→CPU Register to see a list of register values. Notice that GIE
is 0, indicating that interrupts are disabled while the main function is
executing.

Run to the next breakpoint. Notice that GIE is now 1, indicating that
interrupts are now enabled. Notice that if you run the program, you hit this
breakpoint over and over.

After the startup process and main are completed, a DSP/BIOS
application drops into a background thread called the idle loop. This loop
is managed by the IDL module and continues until you halt the program.
The idle loop runs with interrupts enabled and can be preempted at any
point by any ISR, software interrupt, or task triggered to handle the
application’s real-time processing. Chapter 5 through Chapter 7 explain
more about using ISRs and software interrupts with DSP/BIOS

❏ In an MS-DOS window, run the sectti.exe utility by typing the following
command lines. Change the directory locations if you installed Code
Composer Studio in a location other than c:\ti.

cd c:\ti\c6000\tutorial\hello1
sectti hello.out > hello1.prn
cd ..\hello2
sectti hello.out > hello2.prn

Compare the hello1.prn and hello2.prn files to see differences in memory
sections and sizes when using stdio.h calls and DSP/BIOS. Notice the
size of the .text section is smaller for the DSP/BIOS call to LOG_printf, as
compared to linking the stdio when using puts(). See the TMS320C6000
DSP/BIOS API Reference Guide for more information on the sectti utility.

3.6 Learning More

To learn more about Code Composer Studio and DSP/BIOS, see the online
help for Code Composer Studio. In addition, see the Code Composer Studio
User’s Guide, the TMS320C6000 DSP/BIOS User’s Guide, and the
TMS320C6000 DSP/BIOS API Reference Guide (which are provided as
Adobe Acrobat files).
3-10

Chapter 4

Testing Algorithms and Data from a File

This chapter shows the process for creating and testing a simple algorithm
and introduces additional Code Composer Studio features.

In this chapter, you create a program that performs basic signal processing.
You expand on this example in the following two chapters.

You create and test a simple algorithm using data stored in a file on your PC.
You also use Probe Points, graphs, animation, and GEL files with Code
Composer Studio.

4.1 Opening and Examining the Project . 4–2

4.2 Reviewing the Source Code . 4–4

4.3 Adding a Probe Point for File I/O . 4–6

4.4 Displaying Graphs. 4–9

4.5 Animating the Program and Graphs . 4–10

4.6 Adjusting the Gain. 4–12

4.7 Viewing Out-of-Scope Variables . 4–13

4.8 Using a GEL File . 4–15

4.9 Adjusting and Profiling the Processing Load. 4–16

4.10 Things to Try . 4–18

4.11 Learning More . 4–18

Topic Page
4-1

Opening and Examining the Project
4.1 Opening and Examining the Project

You begin by opening a project with Code Composer Studio and examining
the source code files and libraries used in that project.

1) If you installed Code Composer Studio in c:\ti, create a folder called
volume1 in the c:\ti\myprojects folder. (If you installed elsewhere, create
a folder within the myprojects folder in the location where you installed.)

2) Copy all files from the c:\ti\c6000\tutorial\volume1 folder to this new folder.

3) If Code Composer Studio is not already running, from the Windows Start
menu, choose Programs→Code Composer Studio ’C6000→CCStudio.

4) Choose Project→Open. Select the volume.mak file in the folder you
created and click Open.

5) Code Composer Studio displays a dialog box indicating the library file
was not found. This is because the project was moved. To locate this file,
click the Browse button, navigate to c:\ti\c6000\cgtools\lib, and select
rts6201.lib. (If you installed somewhere other than c:\ti, navigate to the
\c6000\cgtools\lib folder within the folder where you installed.)
4-2

Opening and Examining the Project
6) Expand the Project View by clicking
the + signs next to Project,
VOLUME.MAK, Include, Libraries,
and Source.

The files used in this project are:

■ volume.c . This is the source code
for the main program. You
examine the source code in the
next section.

■ volume.h . This is a header file
included by volume.c to define
various constants and structures.

■ load.asm . This file contains the
load routine, a simple assembly
loop routine that is callable from C
with one argument. It consumes
about 1000*argument instruction
cycles.

■ vectors.asm . This is the same file used in Chapter 2 to define a reset
entry point in the DSP’s interrupt vector table.

■ volume.cmd . This linker command file maps sections to memory.

■ rts6201.lib . This library provides run-time support for the target DSP.
Testing Algorithms and Data from a File 4-3

Reviewing the Source Code
4.2 Reviewing the Source Code

Double-click on the volume.c file in the Project View to see the source code
in the right half of the Code Composer Studio window.

Notice the following parts of this example:

❏ After the main function prints a message, it enters an infinite loop. Within
this loop, it calls the dataIO and processing functions.

❏ The processing function multiplies each value in the input buffer by the
gain and puts the resulting values into the output buffer. It also calls the
assembly load routine, which consumes instruction cycles based on the
processingLoad value passed to the routine.

❏ The dataIO function in this example does not perform any actions other
than to return. Rather than using C code to perform I/O, you can use a
Probe Point within Code Composer Studio to read data from a file on the
host into the inp_buffer location.

#include <stdio.h>

#include "volume.h"

/* Global declarations */
int inp_buffer[BUFSIZE]; /* processing data buffers */
int out_buffer[BUFSIZE];

int gain = MINGAIN; /* volume control variable */
unsigned int processingLoad = BASELOAD; /* processing load */

/* Functions */
extern void load(unsigned int loadValue);

static int processing(int *input, int *output);
static void dataIO(void);

/* ======== main ======== */
void main()
{
 int *input = &inp_buffer[0];
 int *output = &out_buffer[0];

 puts("volume example started\n");
4-4

Reviewing the Source Code
 /* loop forever */
 while(TRUE)
 {
 /* Read using a Probe Point connected to a host file. */
 dataIO();

 /* apply gain */
 processing(input, output);
 }
}

/* ======== processing ======== *
 * FUNCTION: apply signal processing transform to input signal.
 * PARAMETERS: address of input and output buffers.
 * RETURN VALUE: TRUE. */
static int processing(int *input, int *output)
{
 int size = BUFSIZE;

 while(size--){
 *output++ = *input++ * gain;
 }

 /* additional processing load */
 load(processingLoad);

 return(TRUE);
}

/* ======== dataIO ======== *
 * FUNCTION: read input signal and write output signal.
 * PARAMETERS: none.
 * RETURN VALUE: none. */
static void dataIO()
{
 /* do data I/O */
 return;
}

Testing Algorithms and Data from a File 4-5

Adding a Probe Point for File I/O
4.3 Adding a Probe Point for File I/O

In this section, you add a Probe Point, which reads data from a file on your
PC. Probe Points are a useful tool for algorithm development. You can use
them in the following ways:

❏ To transfer input data from a file on the host PC to a buffer on the target
for use by the algorithm

❏ To transfer output data from a buffer on the target to a file on the host PC
for analysis

❏ To update a window, such as a graph, with data

Probe Points are similar to breakpoints in that they both halt the target to
perform their action. However, Probe Points differ from breakpoints in the
following ways:

❏ Probe Points halt the target momentarily, perform a single action, and
resume target execution.

❏ Breakpoints halt the CPU until execution is manually resumed and cause
all open windows to be updated.

❏ Probe Points permit automatic file input or output to be performed;
breakpoints do not.

This chapter shows how to use a Probe Point to transfer the contents of a PC
file to the target for use as test data. It also uses a breakpoint to update all the
open windows when the Probe Point is reached. These windows include
graphs of the input and output data. Chapter 7 shows two other ways to
manage input and output streams.

1) Choose Project→Rebuild All or click the (Rebuild All) toolbar button.

2) Choose File→Load Program. Select the program you just rebuilt,
volume.out, and click Open.

3) Double-click on the volume.c file in the Project View.

4) Put your cursor in the line of the main function that says:

dataIO();

The dataIO function acts as a placeholder. You add to it later. For now, it
is a convenient place to connect a Probe Point that injects data from a PC
file.

5) Click the (Toggle Probe Point) toolbar button. The line is highlighted
in blue.
4-6

Adding a Probe Point for File I/O
6) Choose File→File I/O. The File I/O dialog appears so that you can select
input and output files.

7) In the File Input tab, click Add File.

8) Choose the sine.dat file.

Notice that you can select the format of the data in the Files of Type box.
The sine.dat file contains hex values for a sine waveform.

9) Click Open to add this file to the list in the File I/O dialog.

A control window for the sine.dat file appears. (It may be covered by the
Code Composer Studio window.) Later, when you run the program, you
can use this window to start, stop, rewind, or fast forward within the data
file.

10) In the File I/O dialog, change the Address to inp_buffer and the Length to
100. Also, put a check mark in the Wrap Around box.

■ The Address field specifies where the data from the file is to be
placed. The inp_buffer is declared in volume.c as an integer array of
BUFSIZE.
Testing Algorithms and Data from a File 4-7

Adding a Probe Point for File I/O
■ The Length field specifies how many samples from the data file are
read each time the Probe Point is reached. You use 100 because that
is the value set for the BUFSIZE constant in volume.h (0x64).

■ The Wrap Around option causes Code Composer Studio to start
reading from the beginning of the file when it reaches the end of the
file. This allows the data file to be treated as a continuous stream of
data even though it contains only 1000 values and 100 values are
read each time the Probe Point is reached.

11) Click Add Probepoint. The Probe Points tab of the Break/Probe/Profile
Points dialog appears.

12) In the Probe Point list, highlight the line that says VOLUME.C line 53 -->
No Connection.

13) In the Connect To field, click the down arrow and select the sine.dat file
from the list.

14) Click Replace. The Probe Point list changes to show that this Probe Point
is connected to the sine.dat file.

15) Click OK. The File I/O dialog shows that the file is now connected to a
Probe Point.

16) Click OK in the File I/O dialog.
4-8

Displaying Graphs
4.4 Displaying Graphs

If you ran the program now, you would not see much information about what
the program was doing. You could set watch variables on addresses within
the inp_buffer and out_buffer arrays, but you would need to watch a lot of
variables and the display would be numeric rather than visual.

Code Composer Studio provides a variety of ways to graph data processed
by your program. In this example, you view a signal plotted against time. You
open the graphs in this section and run the program in the next section.

1) Choose View→Graph→Time/Frequency.

2) In the Graph Property Dialog, change the Graph Title, Start Address,
Acquisition Buffer Size, Display Data Size, Autoscale, and Maximum
Y-value properties to the values shown here. Scroll down or resize the
dialog box to see all the properties.

3) Click OK. A graph window for the Input Buffer appears.

4) Right-click on the Input Buffer window and choose Clear Display from the
pop-up menu.

5) Choose View→Graph→Time/Frequency again.

6) This time, change the Graph Title to Output Buffer and the Start Address
to out_buffer. All the other settings are correct.

7) Click OK to display the graph window for the Output Buffer. Right-click on
the graph window and choose Clear Display from the pop-up menu.
Testing Algorithms and Data from a File 4-9

Animating the Program and Graphs
4.5 Animating the Program and Graphs

So far, you have placed a Probe Point, which temporarily halts the target,
transfers data from the host PC to the target, and resumes execution of the
target application. However, the Probe Point does not cause the graphs to be
updated. In this section, you create a breakpoint that causes the graphs to be
updated and use the Animate command to resume execution automatically
after the breakpoint is reached.

1) In the Volume.c window, put your cursor in the line that calls dataIO.

2) Click the (Toggle Breakpoint) toolbar button or press F9. The line is
highlighted in both magenta and blue (unless you changed either color
using Option→Color) to indicate that both a breakpoint and a Probe Point
are set on this line.

You put the breakpoint on the same line as the Probe Point so that the
target is halted only once to perform both operations—transferring the
data and updating the graphs.

3) Arrange the windows so that you can see both graphs.

4) Click the (Animate) toolbar button or press F12 to run the program.

The Animate command is similar to the Run command. It causes the
target application to run until it reaches a breakpoint. The target is then
halted and the windows are updated. However, unlike the Run command,
the Animate command then resumes execution until it reaches another
breakpoint. This process continues until the target is manually halted.
Think of the Animate command as a run-break-continue process.

5) Notice that each graph contains 2.5 sine waves and the signs are
reversed in these graphs. Each time the Probe Point is reached, Code
Composer Studio gets 100 values from the sine.dat file and writes them
to the inp_buffer address. The signs are reversed because the input
4-10

Animating the Program and Graphs
buffer contains the values just read from sine.dat, while the output buffer
contains the last set of values processed by the processing function.

Note: Target Halts at Probe Points

Code Composer Studio briefly halts the target whenever it reaches a Probe
Point. Therefore, the target application may not meet real-time deadlines if
you are using Probe Points. At this stage of development, you are testing
the algorithm. Later, you analyze real-time behavior using RTDX and
DSP/BIOS.

The graphs can also be updated using only Probe Points and the Run
command. See section 4.10, page 4-18 at the end of this chapter to try
animating the graphs using Probe Points only.
Testing Algorithms and Data from a File 4-11

Adjusting the Gain
4.6 Adjusting the Gain

Recall from section 4.2, page 4-4 that the processing function multiplies each
value in the input buffer by the gain and puts the resulting values into the
output buffer. It does this by performing the following statement within a while
loop:

*output++ = *input++ * gain;

This statement multiplies a value in inp_buffer by the gain and places it in the
corresponding location in the out_buffer. The gain is initially set to MINGAIN,
which is defined as 1 in volume.h. To modify the output, you need to change
gain. One way to do this is to use a watch variable.

1) Choose View→Watch Window.

2) Right-click on the Watch window area and choose Insert New Expression
from the pop-up list.

3) Type gain as the Expression and click OK.

The value of this variable appears in the Watch window area.

4) If you have halted the program, click the (Animate) toolbar button to
restart the program.

5) Double-click on gain in the Watch window area.

6) In the Edit Variable window, change the gain to 10 and click OK.

7) Notice that the amplitude of the signal in the Output Buffer graph changes
to reflect the increased gain.
4-12

Viewing Out-of-Scope Variables
4.7 Viewing Out-of-Scope Variables

You have used the Watch Window to view and change the values of variables.
Sometimes you want to examine variables when they are not currently in
scope at the current breakpoint. You can do this by using the call stack.

1) Click (Halt) or press Shift F5 to stop the program.

2) Review the volume.c program within Code Composer Studio (or by
looking at section 4.2, page 4-4). Notice that *input is defined in both the
main and processing functions. However, it is not defined within the
dataIO function.

3) In the Volume.c window, put your cursor on the line that says return;

within the dataIO function.

4) Click the (Toggle Breakpoint) toolbar button or press F9. The line is
highlighted in magenta to indicate that a breakpoint is set (unless you
changed the color using Option→Color).

5) Press F5 to run the program. Code Composer Studio automatically
moves the breakpoint to the next line within that function that corresponds
to an assembly instruction. It displays a message telling you that it has
moved the breakpoint.

6) Click OK.

7) Press F5 until the program stops at the breakpoint at the end of the
dataIO function (instead of at the breakpoint on the call to the dataIO
function).

8) Right-click on the Watch window area and choose Insert New Expression
from the pop-up list.

9) Type *input as the Expression and click OK.
Testing Algorithms and Data from a File 4-13

Viewing Out-of-Scope Variables
10) Notice that the Watch window area says this variable is an unknown
identifier. This shows that *input is not defined within the scope of the
dataIO function.

11) Choose View→Call Stack. You see the call stack area next to the Watch
window area.

12) Click on main() in the call stack area to see the value of *input within the
scope of the main function. (The value should be 0, but may differ if you
have modified the sine.dat file.)

13) Right-click on the call stack area and choose Hide from the pop-up menu.

14) Remove the breakpoint that you added in step 4 by putting he cursor on
the line after return; in dataIO() and clicking the (Toggle Breakpoint)
toolbar button or pressing F9.
4-14

Using a GEL File
4.8 Using a GEL File

Code Composer Studio provides another way of modifying a variable. This
method uses GEL, an extension language, to create small windows that allow
you to modify variables.

1) Choose File→Load GEL. In the Load GEL File dialog box,
select the volume.gel file and click Open.

2) Choose GEL→Application Control→Gain. This item was
added to your menus when you loaded the GEL file.

3) If you have halted the program, click the (Animate)
toolbar button. Notice that even though the gain is at zero
your previous gain is still the same. The Gain slider does
not send a value until it is changed.

4) In the Gain window, use the slider to change the gain. The
amplitude changes in the Output Buffer window. In
addition, the value of the gain variable in the Watch
window area changes whenever you move the slider.

5) Click (Halt) or press Shift F5 to stop the program.

6) To see how the Gain GEL function works, click the + sign next to GEL
Files in the Project View. Then, double-click on the VOLUME.GEL file to
see its contents:

menuitem "Application Control"
dialog Load(loadParm "Load")
{
 processingLoad = loadParm;
}
slider Gain(0, 10 ,1, 1, gainParm)
{
 gain = gainParm;
}

The Gain function defines a slider with a minimum value of 0, a maximum
value of 10, and an increment and page up/down value of 1. When you
move the slider, the gain variable is changed to the new value of the slider
(gainParm).
Testing Algorithms and Data from a File 4-15

Adjusting and Profiling the Processing Load
4.9 Adjusting and Profiling the Processing Load

In Chapter 2, you used profile-points to measure the number of cycles
required to call puts(). Now, you use profile-points to see the effect of
changing the processingLoad variable, which is passed to the assembly load
routine. The processingLoad is initially set to BASELOAD, which is defined as
1 in volume.h.

1) Choose Profiler→Enable Clock. Make sure you see a check mark next to
this item in the Profiler menu. (If you see a resource conflict message,
close any DSP/BIOS plug-in windows. Then choose Tools→RTDX and
select RTDX Disable from the pull-down list.)

2) Double-click on the volume.c file in the Project View.

3) Put your cursor in the line that says:

load(processingLoad);

4) Click the (Toggle Profile-point) toolbar button or right-click and select
Toggle Profile Pt.

5) Put your cursor in the line that says:

return(TRUE);

6) Click the (Toggle Profile-point) toolbar button.

7) Choose Profiler→View Statistics. The locations shown identify the line
number where you added the profile-points. You may want to resize the
Statistics area so that you can see the Maximum column. Or, you can
right-click on the Statistics area and deselect Allow Docking to display the
statistics in a separate window.

8) If the locations are not listed in ascending order by line number, click the
Location column header.

9) Click the (Animate) toolbar button or press F12.

10) Notice the maximum number of cycles shown for the second profile-point.
It should be about 1018 cycles. (The actual numbers shown may vary,
especially if you are using a non-generic development board.) This is the
number of cycles required to execute the load routine when the
processingLoad is 1.

11) Choose GEL→Application Control→Load.
4-16

Adjusting and Profiling the Processing Load
12) Type 2 as the new load and click Execute. The maximum number of
cycles for the second profile-point changes to 2018. The number of
cycles increases by about 1000 when you increment the processingLoad
by 1. These instruction cycles are performed within the load function,
which is stored in load.asm.

13) Right-click on the Profile Statistics area and choose Clear All from the
pop-up menu. This resets the statistics to 0. The average, maximum, and
minimum are equal to the number of instruction cycles for the current
processingLoad.

14) Click (Halt) or press Shift F5 to stop the program.

15) Before continuing to Chapter 5 (after completing section 4.10, page
4-18), perform the following steps to free the resources used in your
profiling session:

■ Close the Load and Gain controls, the sine.dat control window, and
the Time/Frequency graphs.

■ Choose File→File I/O and click Remove File to delete the sine.dat
file.

■ In the Profiler menu, uncheck Enable Clock.

■ Close the Profile Statistics window by right-clicking and choosing
Hide from the pop-up menu.

■ Choose Debug→Breakpoints. Select Delete All and click OK.

■ Choose Debug→Probe Points. Select Delete All and click OK.

■ Choose Profiler→Profile-points. Select Delete All and click OK.

■ Close open windows and the project (Project→Close).

■ Right-click on volume.gel in the Project View and select Remove.

■ Delete all expressions from the Watch Window and hide the Watch
Window.
Testing Algorithms and Data from a File 4-17

Things to Try
4.10 Things to Try

To explore using Code Composer Studio, try the following:

❏ Add processingLoad to the Watch window. When you use the Load GEL
control, the processingLoad value is updated in the Watch window.

❏ Right-click on the Watch window and choose Insert New Expression.
Click the Help button and read about the display formats you can use.
Experiment with various display formats. For example, you can type
*input,x as the expression to view the sine input in hexadecimal format.

❏ Change BUFSIZE in volume.h to 0x78 (or 120) and rebuild, then reload
the program. Change the Length in the File I/O dialog to 0x78. For both
graphs, change the Acquisition Buffer Size and the Display Data Size to
0x78. This causes a buffer to contain 3 full sine waves rather than 2.5
waves. Animate the program and notice that the input and output buffer
graphs are now in phase. (You may need to halt the program to see
whether the graphs are in phase.)

❏ Instead of using profile-points to gather statistics, try using the clock as
an alternative. Replace the profile-points with breakpoints. Choose
Profiler→View Clock. Run the program to the first breakpoint.
Double-click on the clock area to clear it. Run the program again. The
clock shows the number of cycles it takes to reach the second breakpoint.

❏ Experiment with Probe Points by repeating section 4.3, page 4-6 through
section 4.5, page 4-10. This time, use only Probe Points and the Run
command. Note that you need to create three Probe Points. This is
because a Probe Point can be associated with only one action. There are
two graphs to be updated and one file to use as input. Each of these
actions requires its own Probe Point.

Also notice that each Probe Point must go on a different line of code. As
a result, the target is halted three times as often and actions are not
performed at the same point in target execution. For these reasons, the
combination of a Probe Point and a breakpoint used in this lesson is more
efficient than using Probe Points only.

❏ To practice building projects with Code Composer Studio, copy all the
files in the c:\ti\c6000\tutorial\volume1 folder to a new folder. Delete the
volume.mak file. Then, use Code Composer Studio to recreate the
project using the Project→New and Project→Add Files to Project menu
items. See section 4.1, page 4-2 for a list of the files to add to the project.

4.11 Learning More

To learn more about Probe Points, graphs, animation, and GEL files, see the
online help for Code Composer Studio or the Code Composer Studio User’s
Guide (which is provided as an Adobe Acrobat file).
4-18

Chapter 5

Debugging Program Behavior

This chapter introduces techniques for debugging a program and several
DSP/BIOS plug-ins and modules.

In this chapter, you modify the example from Chapter 4 to create a program
that schedules its functions and allows for multi-threading. You view
performance information for debugging purposes. You also use more features
of DSP/BIOS, including the Execution Graph, the real-time analysis control
panel (RTA Control Panel), the Statistics View, and the CLK, SWI, STS, and
TRC modules.

This chapter requires a physical board and cannot be carried out using a
software simulator. Also, this chapter requires the DSP/BIOS components of
Code Composer Studio.

5.1 Opening and Examining the Project . 5–2

5.2 Reviewing the Source Code . 5–3

5.3 Modifying the Configuration File . 5–6

5.4 Viewing Thread Execution with the Execution Graph 5–10

5.5 Changing and Viewing the Load . 5–12

5.6 Analyzing Thread Statistics . 5–15

5.7 Adding Explicit STS Instrumentation . 5–17

5.8 Viewing Explicit Instrumentation . 5–18

5.9 Things to Try . 5–20

5.10 Learning More . 5–20

Topic Page
5-1

Opening and Examining the Project
5.1 Opening and Examining the Project

You begin by opening a project with Code Composer Studio and examining
the source code files and libraries used in that project.

1) If you installed Code Composer Studio in c:\ti, create a folder called
volume2 in the c:\ti\myprojects folder. (If you installed elsewhere, create
a folder within the myprojects folder in the location where you installed.)

2) Copy all files from the c:\ti\c6000\tutorial\volume2 folder to this new folder.

3) From the Windows Start menu, choose Programs→Code Composer
Studio ’C6000→CCStudio.

4) Choose Project→Open. Select the
volume.mak file in the folder you
created and click Open.

5) Expand the Project View by clicking
the + signs next to Project,
VOLUME.MAK, DSP/BIOS Config,
and Source. The volumecfg.cmd
file, which was created along with a
configuration file, includes a large
number of DSP/BIOS header files.
(You do not need to examine all
these header files.)

The files used in this project include:

■ volume.cdb . This is the configuration file for the project.

■ volume.c . This is the source code for the main program. It has been
revised from the version you used in the previous chapter to support
using DSP/BIOS in this program. You examine the source code in the
next section.

■ volume.h . This is a header file included by volume.c to define various
constants and structures. It is identical to the volume.h file used in the
previous chapter.

■ load.asm . This file contains the load routine, a simple assembly loop
routine that is callable from C with one argument. It is identical to the
load.asm file used in the previous chapter.

■ volumecfg.cmd . This linker command file is created when saving
the configuration file.

■ volumecfg.s62 . This assembly file is created when saving the
configuration file.

■ volumecfg.h62 . This header file is created when saving the
configuration file.
5-2

Reviewing the Source Code
5.2 Reviewing the Source Code

This example modifies the example from Chapter 4 to introduce real-time
behavior. Rather than having the main function loop forever, the data I/O in
the real application is likely to happen as a result of a periodic external
interrupt. A simple way to simulate a periodic external interrupt in the example
is to use the timer interrupt from the on-chip timer.

1) Double-click on the volume.c file in the Project View to see the source
code in the right half of the Code Composer Studio window.

2) Notice the following aspects of the example:

■ The data types for declarations have changed. DSP/BIOS provides
data types that are portable to other processors. Most types used by
DSP/BIOS are capitalized versions of the corresponding C types.

■ The code uses #include to reference three DSP/BIOS header files:
std.h, log.h, and swi.h. The std.h file must be included before other
DSP/BIOS header files.

■ The objects created in the configuration file are declared as external.
You examine the configuration file in the next section.

■ The main function no longer calls the dataIO and processing
functions. Instead, the main function simply returns after calling
LOG_printf to display a message. This drops the program into the
DSP/BIOS idle loop. At this point, the DSP/BIOS scheduler manages
thread execution.

■ The processing function is now called by a software interrupt called
processing_SWI, which yields to all hardware interrupts.
Alternatively, a hardware ISR could perform the signal processing
directly. However, signal processing may require a large number of
cycles, possibly more than the time until the next interrupt. Such
processing would prevent the interrupt from being handled.
Debugging Program Behavior 5-3

Reviewing the Source Code
■ The dataIO function calls SWI_dec, which decrements a counter
associated with a software interrupt object. When the counter
reaches 0, the software interrupt schedules its function for execution
and resets the counter.

The dataIO function simulates hardware-based data I/O. A typical
program accumulates data in a buffer until it has enough data to
process. In this example, the dataIO function is performed 10 times
for each time the processing function is performed. The counter
decremented by SWI_dec controls this.

#include <std.h>
#include <log.h>
#include <swi.h>

#include "volume.h"

/* Global declarations */
Int inp_buffer[BUFSIZE]; /* processing data buffers */
Int out_buffer[BUFSIZE];

Int gain = MINGAIN; /* volume control variable */
Uns processingLoad = BASELOAD; /* processing load value */

/* Objects created by the Configuration Tool */
extern far LOG_Obj trace;
extern far SWI_Obj processing_SWI;

/* Functions */
extern Void load(Uns loadValue);

Int processing(Int *input, Int *output);
Void dataIO(Void);

/* ======== main ======== */
Void main()
{
 LOG_printf(&trace,"volume example started\n");
 /* fall into DSP/BIOS idle loop */
 return;
}

5-4

Reviewing the Source Code
/* ======== processing ======== *
 * FUNCTION: Called from processing_SWI to apply signal
 * processing transform to input signal.
 * PARAMETERS: Address of input and output buffers.
 * RETURN VALUE: TRUE. */
Int processing(Int *input, Int *output)
{
 Int size = BUFSIZE;
 while(size--){
 *output++ = *input++ * gain;
 }
 /* additional processing load */
 load(processingLoad);

 return(TRUE);
}

/* ======== dataIO ======== *
 * FUNCTION: Called from timer ISR to fake a periodic
 * hardware interrupt that reads in the input
 * signal and outputs the processed signal.
 * PARAMETERS: none
 * RETURN VALUE: none */
Void dataIO()
{
 /* do data I/O */

 /* post processing_SWI software interrupt */
 SWI_dec(&processing_SWI);
}

Debugging Program Behavior 5-5

Modifying the Configuration File
5.3 Modifying the Configuration File

A DSP/BIOS configuration file has already been created for this example. In
this section, you examine the objects that have been added to the default
configuration.

1) In the Project View, double-click on the volume.cdb file (in the DSP/BIOS
Config folder) to open it.

2) Click the + signs next to the CLK, LOG, and SWI managers. This
configuration file contains objects for these modules in addition to the
default set of objects in the configuration file.

3) Highlight the LOG object called trace. You see the properties for this log
in the right half of the window. This object’s properties are the same as
those of the trace LOG you created in section 3.1, page 3-2. The
volume.c program calls LOG_printf to write volume example started to
this log.
5-6

Modifying the Configuration File
4) Right-click on the LOG object called LOG_system. From the pop-up
menu, select Properties.

You see the properties dialog for this object. At run time, this log stores
events traced by the system for various DSP/BIOS modules.

5) Change the buflen property to 512 words and click OK.

6) Highlight the CLK object called dataIO_CLK. Notice that the function
called when this CLK object is activated is _dataIO. This is the dataIO
function in volume.c.

Note: Underscores and C Function Names

This C function name is prefixed by an underscore because saving the
configuration generates assembly language files. The underscore prefix is
the convention for accessing C functions from assembly. (See the section
on interfacing C with assembly language in the TMS320C6000 Optimizing
C Compiler User’s Guide for more information.)

This rule applies only to C functions you write. You do not need to use the
underscore prefix with configuration-generated objects or DSP/BIOS API
calls because two names are automatically created for each object: one
prefixed with an underscore and one without.
Debugging Program Behavior 5-7

Modifying the Configuration File
7) Since the dataIO function is no longer run within main, what causes this
CLK object to run its function? To find out, right-click on the CLK - Clock
Manager object. From the pop-up menu, select Properties. You see the
Clock Manager Properties dialog.

Notice that the CPU Interrupt for the Clock Manager is HWI_INT14. This
property is gray because it is actually set by the HWI_INT14 object.

8) Click Cancel to close the Clock Manager Properties dialog without
making any changes.

9) Expand the list of HWI objects and examine the properties of the
HWI_INT14 object. Its interrupt source is Timer 0 on the DSP and it runs
a function called CLK_F_isr when the on-chip timer causes an interrupt.

The CLK object functions run from the context of the CLK_F_isr hardware
interrupt function. Therefore, they run to completion without yielding and
have higher priority than any software interrupts. (The CLK_F_isr saves
the register context, so the CLK functions do not need to save and restore
context as would be required normally within a hardware ISR function.)
5-8

Modifying the Configuration File
10) Right-click on the processing_SWI software interrupt object. From the
pop-up menu, select Properties.

■ function . When this software interrupt is activated, the processing
function runs. This function is shown in section 5.2, page 5–5.

■ mailbox . The mailbox value can control when a software interrupt
runs. Several API calls affect the value of the mailbox and can post
the software interrupt depending on the resulting value. When a
software interrupt is posted, it runs when it is the highest priority
software or hardware interrupt thread that has been posted.

■ arg0, arg1 . The inp_buffer and out_buffer addresses are passed to
the processing function.

11) Click Cancel to close this properties dialog without making any changes.

12) Since the processing function is no longer run within main, what causes
this SWI object to run its function? In volume.c, the dataIO function calls
SWI_dec, which decrements the mailbox value and posts the software
interrupt if the new mailbox value is 0. So, this SWI object runs its function
every tenth time the dataIO_CLK object runs the dataIO function.

13) Choose File→Close. You are asked whether you want to save your
changes to volume.cdb. Click Yes. Saving this file also generates
volumecfg.cmd, volumecfg.s62, and volumecfg.h62.

14) Choose Project→Build or click the (Incremental Build) toolbar button.
Debugging Program Behavior 5-9

Viewing Thread Execution with the Execution Graph
5.4 Viewing Thread Execution with the Execution Graph

While you could test the program by putting a Probe Point within the
processing function and view graphs of input and output data (as you did in
the previous chapter), you have already tested the signal processing
algorithm. At this stage of development, your focus is on making sure the
threads can meet their real-time deadlines.

1) Choose File→Load Program. Select the program you just built,
volume.out in the volume2 folder, and click Open.

2) Choose Debug→Go Main. The program runs to the first statement in the
main function.

3) Choose Tools→DSP/BIOS→RTA Control
Panel. You see a list of instrumentation
types at the bottom of the Code
Composer Studio window.

4) Right-click on the area that contains the
check boxes and deselect Allow
Docking, or select Float in Main Window,
to display the RTA Control Panel in a
separate window. Resize the window so
that you can see all of the check boxes
shown here.

5) Put check marks in the boxes shown
here to enable SWI and CLK logging and
to globally enable tracing on the host.

6) Choose Tools→DSP/BIOS→Execution
Graph. The Execution Graph appears at
the bottom of the Code Composer Studio window. You may want to resize
this area or display it as a separate window.

7) Right-click on the RTA Control Panel and choose Property Page from the
pop-up menu.

8) Verify that the Refresh Rate for Message Log/Execution Graph is 1
second and click OK.
5-10

Viewing Thread Execution with the Execution Graph
9) Choose Debug→Run or click the (Run) toolbar button. The Execution
Graph should look similar to this:

10) The marks in the Time row show each time the Clock Manager ran the
CLK functions. Count the marks between times the processing_SWI
object was running. There should be 10 marks. This indicates that the
processing_SWI object ran its function every tenth time the dataIO_CLK
object ran its function. This is as expected because the mailbox value that
is decremented by the dataIO function starts at 10.
Debugging Program Behavior 5-11

Changing and Viewing the Load
5.5 Changing and Viewing the Load

Using the Execution Graph, you saw that the program meets its real-time
deadlines. However, the signal processing functions in a typical program must
perform more complex and cycle consuming work than multiplying a value
and copying it to another buffer. You can simulate such complex threads by
increasing the cycles consumed by the load function.

1) Choose Tools→DSP/BIOS→CPU Load Graph. A blank CPU Load Graph
appears.

2) Right-click on the RTA Control Panel and choose Property Page from the
pop-up menu.

3) Change the Refresh Rate for Statistics View/CPU Load Graph to 0.5
seconds and click OK. Notice that the CPU load is currently very low.

The Statistics View and the CPU Load transfer very little data from the
target to the host, so you can set these windows to update frequently
without causing a large effect on program execution. The Message Log
and Execution Graph transfer the number of words specified for the
buflen property of the corresponding LOG object in the configuration file.
Since more data is transferred, you may want to make these windows
update less frequently.

4) Choose File→Load GEL. In the Load GEL File dialog, select the
volume.gel file and click Open.

5) Choose GEL→Application Control→Load.

6) Type 100 as the new load and click
Execute. The CPU load increases
to about 9%.
5-12

Changing and Viewing the Load
7) Right-click on the Execution Graph and choose Clear from the pop-up
menu. Notice that the program still meets its real-time deadline. There are
10 time marks between each execution of the processing_SWI function.

8) Using the GEL control, change the load to 200 and click Execute.

9) Right-click on the Execution Graph and choose Clear from the pop-up
menu. One or two of the time marks occur while the processing_SWI
function is executing. Does this mean the program is missing its real-time
deadline? No, it shows that the program is functioning correctly. The
hardware interrupt that runs the CLK object functions can interrupt the
software interrupt processing, and the software interrupt still completes
its work before it needs to run again.

10) Using the GEL control, change
the load to 1250 and click
Execute. The CPU load
increases to about 95% and the
Execution Graph and CPU load
are updated less frequently.

11) Right-click on the Execution
Graph and choose Clear from
the pop-up menu. The program
still meets its real-time deadline
because processing_SWI completes before 10 time marks have
occurred.
Debugging Program Behavior 5-13

Changing and Viewing the Load
12) Using the GEL control, change the load to 1500 and click Execute. The
CPU Load Graph and the Execution Graph stop updating. This is
because Execution Graph data is sent to the host within an idle thread,
which has the lowest execution priority within the program. Because the
higher-priority threads are using all the processing time, there is not
enough time for the host control updates to be performed. The program
is now missing its real-time deadline.

13) Choose Debug→Halt. This stops the program and updates the Execution
Graph. You may see squares in the Assertions row. These squares
indicate that the Code Composer Studio detected that the application
missed a real-time deadline.

14) Using the GEL control, change
the load to 10 and click Execute.
The CPU load and Execution
Graph begin updating again.

Note: Modifying the Load Using RTDX

Using the Load GEL control temporarily halts the target. If you are
analyzing a real-time system and do not want to affect system performance,
modify the load using a Real-Time Data Exchange (RTDX) application. The
next chapter shows how to modify the load in real-time using RTDX.
5-14

Analyzing Thread Statistics
5.6 Analyzing Thread Statistics

You can use other DSP/BIOS controls to examine the load on the DSP and
the processing statistics for the processing_SWI object.

1) Choose Tools→DSP/BIOS→Statistics View. A Statistics View area that
says Load DSP/BIOS program and/or set property to use control
appears. It says this because you need to select the statistics you want
to view.

2) Right-click on the Statistics View area and choose Property Page from
the pop-up menu. Highlight the items shown here and click OK. (You can
hold down the Ctrl key to select individual items or the Shift key to select
a continuous range of items.)

3) You see the statistics fields for the processing_SWI objects. You may
want to make this area a separate window (by right-clicking on it and
deselecting Allow Docking in the pop-up menu) and resize the window so
that you can see all four fields.

4) In the RTA Control Panel, put a check mark in the enable SWI
accumulators box.
Debugging Program Behavior 5-15

Analyzing Thread Statistics
5) If you have halted the program, click the (Run) toolbar button.

6) Notice the Max value in the Statistics View. SWI statistics are measured
in instruction cycles.

7) Using the GEL control, increase the load and click Execute. Notice the
change in the Max value for the number of instructions performed from
the beginning to the end of processing_SWI increases.

8) Experiment with different load values. If you decrease the load, right-click
on the Statistics View and select Clear from the pop-up menu.

This resets the fields to their lowest possible values, allowing you to see
the current number of instruction cycles in the Max field.

9) Click the (Halt) toolbar button and close all the DSP/BIOS and GEL
controls you have opened.
5-16

Adding Explicit STS Instrumentation
5.7 Adding Explicit STS Instrumentation

In the previous section, you used the Statistics View to see the number of
instructions performed during a software interrupt’s execution. If you use a
configuration file, DSP/BIOS supports such statistics automatically. This is
called implicit instrumentation. You can also use API calls to gather other
statistics. This is called explicit instrumentation.

1) In the Project View, double-click on the volume.cdb file (in the DSP/BIOS
Config folder) to open it.

2) Right-click on the STS manager and choose Insert STS from the pop-up
menu.

3) Rename the new STS0 object to processingLoad_STS. The default
properties for this object are all correct.

4) Choose File→Close. You are asked whether you want to save your
changes to volume.cdb. Click Yes.

5) In the Project View, double-click on the volume.c program to open it for
editing. Make the following changes to the program:

■ Add the following lines below the line that includes the swi.h file:

#include <clk.h>
#include <sts.h>
#include <trc.h>

■ Add the following to the declarations in the section labeled with the
comment “Objects created by the Configuration Tool ”:

extern far STS_Obj processingLoad_STS;

■ Add the following lines within the processing function before the call
to the load function:

/* enable instrumentation only if TRC_USER0 is set */
if (TRC_query(TRC_USER0) == 0) {
 STS_set(&processingLoad_STS, CLK_gethtime());
}

■ Add the following lines within the processing function after the call to
the load function:

if (TRC_query(TRC_USER0) == 0) {
 STS_delta(&processingLoad_STS, CLK_gethtime());
}

6) Choose File→Save to save your changes to volume.c.

7) Choose Project→Build or click the (Incremental Build) toolbar button.
Debugging Program Behavior 5-17

Viewing Explicit Instrumentation
5.8 Viewing Explicit Instrumentation
To view information provided by the explicit instrumentation calls you added,
you use the Statistics View and the RTA Control Panel.

1) Choose File→Load Program. Select the
program you just rebuilt, volume.out, and
click Open.

2) Choose Tools→DSP/BIOS→RTA Control
Panel.

3) Right-click on the RTA Control Panel area
and deselect Allow Docking to display the
RTA Control Panel in a separate window.
Resize the window so that you can see all
of the check boxes shown here.

4) Put check marks in the boxes shown here
to enable SWI accumulators, USER0
trace, and to globally enable tracing on
the host. Enabling USER0 tracing causes
the calls to TRC_query(TRC_USER0) to
return 0.

5) Choose Tools→DSP/BIOS→Statistics View.

6) Right-click on the Statistics View area and choose Property Page from
the pop-up menu. Highlight the processing_SWI and
processingLoad_STS objects. Also, highlight all four statistics.

7) Click OK. You see the statistics fields for both objects. You may want to
make this area a separate window (by deselecting Allow Docking in the
pop-up menu) and resize the window so that you can see all the fields.

8) Choose Debug→Run or click the (Run) toolbar button.
5-18

Viewing Explicit Instrumentation
9) Multiply the Max value for processingLoad_STS by 4.

Because you used the CLK_gethtime function to benchmark the
processing load, the statistics for processingLoad_STS are measured in
on-chip timer counter increments. SWI statistics are measured in
instruction cycles. On TMS320C6000 DSPs, the high-resolution time is
incremented every 4 instruction cycles. Therefore, to convert the
processingLoad_STS units to instruction cycles, you multiply by 4.

10) Subtract the resulting processingLoad_STS Max value in instruction
cycles from the processing_SWI Max value. The result should be about
3420

11) instructions. (The actual numbers shown may vary, especially if you are
using a non-generic development board.) These instructions are
performed within the processing function, but not between the calls to
STS_set and STS_delta, as shown below.

For example, if the load is 10, the processingLoad_STS Max is about
2604 and the processing_SWI Max is about 13832. To calculate the
instruction cycles performed within the processing function but outside
the calls to STS_set and STS_delta, the equation is:

13832 - (2604 * 4) = 3416

12) Choose GEL→Application Control→Load. (If you have closed and
restarted Code Composer Studio, you must reload the GEL file.)

13) Change the Load and click Execute.

14) Notice that while both Max values increase, the difference between the
two Max values (after you multiply the processingLoad_STS Max by 4)
stays the same.

processingLoad_S
T

S

/* ======== processing ======== */
Int processing(Int *input, Int *output)
{
 Int size = BUFSIZE;
 while(size--){
 *output++ = *input++ * gain;
 }
 /* enable instrumentation if TRC_USER0 is set */
 if (TRC_query(TRC_USER0) == 0) {
 STS_set(&processingLoad_STS, CLK_gethtime());
 }
 /* additional processing load */
 load(processingLoad);
 if (TRC_query(TRC_USER0) == 0) {
 STS_delta(&processingLoad_STS, CLK_gethtime());
 }
 return(TRUE);
}

processing_S
W

I

Debugging Program Behavior 5-19

Things to Try
15) Remove the check mark from the enable USER0 trace box in the RTA
Control Panel.

16) Right-click on the Statistics View and choose Clear from the pop-up
menu.

17) Notice that no values are updated for processingLoad_STS. This is
because disabling the USER0 trace causes the following statement in the
program to be false:

if (TRC_query(TRC_USER0) == 0)

As a result, the calls to STS_set and STS_delta are not performed.

18) Before continuing to the next chapter (after completing section 5.9, page
5-20), perform the following steps to prepare for the next chapter:

■ Click (Halt) or press Shift F5 to stop the program.

■ Close all GEL dialog boxes, DSP/BIOS plug-ins, and source
windows.

5.9 Things to Try

To further explore DSP/BIOS, try the following:

❏ Change the Statistics Units property of the SWI Manager in the
configuration file to milliseconds or microseconds. Rebuild and reload the
program and notice how the values in the Statistics View change.

❏ Change the Host Operation property of the processingLoad_STS object
in the configuration file to A * x and the A property to 4. This Host
Operation multiplies the statistics by 4. The calls to CLK_gethtime cause
statistics to be measured in high-resolution timer increments, which occur
every 4 CPU cycles. So, changing the Host Operation converts the timer
increments to CPU cycles. Rebuild the program and notice how the
values in the Statistics View change.

❏ Modify volume.c by using the CLK_getltime function instead of the
CLK_gethtime function. Rebuild the program and notice how the values
in the Statistics View change. The CLK_getltime function gets a
low-resolution time that corresponds to the timer marks you saw in the
Execution Graph. You must increase the load significantly to change the
Statistics View values when using CLK_getltime.

5.10 Learning More

To learn more about the CLK, SWI, STS, and TRC modules, see the online
help or the TMS320C6000 DSP/BIOS User’s Guide (which is provided as an
Adobe Acrobat file).
5-20

Chapter 6

Analyzing Real-Time Behavior

This chapter introduces techniques for analyzing and correcting real-time
program behavior.

In this chapter, you analyze real-time behavior and correct scheduling
problems using the example from Chapter 5. You use RTDX (Real-Time Data
Exchange) to make real-time changes to the target, use DSP/BIOS periodic
functions, and set software interrupt priorities.

This chapter requires a physical board and cannot be carried out using a
software simulator. Also, this chapter requires the DSP/BIOS and RTDX
components of Code Composer Studio.

6.1 Opening and Examining the Project . 6–2

6.2 Modifying the Configuration File . 6–3

6.3 Reviewing the Source Code Changes . 6–5

6.4 Using the RTDX Control to Change the Load at Run Time 6–7

6.5 Modifying Software Interrupt Priorities . 6–11

6.6 Things to Try . 6–12

6.7 Learning More . 6–13

Topic Page
6-1

Opening and Examining the Project
6.1 Opening and Examining the Project

In this chapter, you modify the example you worked on in the previous
chapter.

Note: Copy Example Files if Previous Chapter Not Completed

If you did not complete the previous chapter, you can copy example files
from the volume3 folder that reflect the state of the example at the end of
the previous chapter. Copy all the files from c:\ti\c6000\tutorial\volume3 (or
the location where you installed Code Composer Studio) to your working
folder.

1) Copy only the following files from the c:\ti\c6000\tutorial\volume4\ folder
to your working folder. (Note that you should not copy all the files from the
volume4 folder. In particular, do not copy the volume.cdb file.)

■ volume.c . The source code has been modified to allow you to use
the RTDX module to change the load without stopping the target
program. You examine the changes in section 6.3, page 6-5.

■ loadctrl.exe . This is a simple Windows application written in Visual
Basic 5.0. It sends load values to the target in real time using RTDX.

■ loadctrl.frm, loadctrl.frx, loadctrl.vbp . If you have Visual Basic,
you can use it to examine these source files for the loadctrl.exe
application.

2) From the Windows Start menu, choose Programs→Code Composer
Studio ’C6000→CCStudio.

3) Choose Project→Open. Select the volume.mak file in your working folder
and click Open.
6-2

Modifying the Configuration File
6.2 Modifying the Configuration File

For this example, you need to add one new object to the configuration file.
(The volume.cdb file in the c:\ti\c6000\tutorial\volume4\ folder already
contains this object.)

1) In the Project View, double-click on the volume.cdb file to open it.

2) Select LOG_system, change the buflen property to 512 words, and click
OK (as you did in section 5.3, page 5–7).

3) Right-click on the PRD manager and choose Insert PRD from the pop-up
menu.

4) Rename the PRD0 object to loadchange_PRD.

5) Right-click on the loadchange_PRD object and choose Properties from
the pop-up menu.

6) Set the following properties for the loadchange_PRD object and click OK.

■ Change the period to 2. By default, the PRD manager uses the CLK
manager to drive PRD execution. The default properties for the CLK
class make a clock interrupt trigger a PRD tick each millisecond. So,
this PRD object runs its function every 2 milliseconds.

■ Change the function to _loadchange. This PRD object executes the
loadchange C function each time the period you chose elapses.
(Recall that you need to use an underscore prefix for C functions in
the configuration file.) You look at this function in the next section.
Analyzing Real-Time Behavior 6-3

Modifying the Configuration File
7) Click the + sign next to the SWI manager. A SWI object called PRD_swi
was added automatically. This software interrupt executes periodic
functions at run time. Therefore, all PRD functions are called within the
context of a software interrupt and can yield to hardware interrupts. In
contrast, CLK functions run in the context of a hardware interrupt. (The
KNL_swi object runs a function that runs the TSK manager. See the
TMS320C6000 DSP/BIOS User’s Guide and the online help for
information about tasks, which are not used in this tutorial.)

8) Click the + sign next to the CLK manager. Notice that the CLK object
called PRD_clock runs a function called PRD_F_tick. This function
causes the DSP/BIOS system clock to tick (by calling the PRD_tick API
function) and the PRD_swi software interrupt to be posted if any PRD
functions need to run. PRD_swi runs the functions for all the PRD objects
whose period has elapsed.

9) Right click on the PRD manager, and choose Properties from the pop-up
menu. The PRD manager has a property called Use CLK Manager to
drive PRD. Make sure this box is checked for this example.

In your own projects, if you remove the check mark from this box, the
PRD_clock object would be deleted automatically. Your program could
then call PRD_tick from some other event, such as a hardware interrupt,
to drive periodic functions.

10) Recall that the processing_SWI object has a mailbox value of 10 and that
the mailbox value is decremented by the dataIO_CLK object, which runs
every millisecond. As a result, the processing_SWI runs its function every
10 milliseconds. In contrast, the loadchange_PRD object should run its
function every 2 milliseconds.

11) Choose File→Close. You are asked whether you want to save your
changes to volume.cdb. Click Yes. Saving this file also generates
volumecfg.cmd, volumecfg.s62, and volumecfg.h62.

12) Choose Project→Rebuild All or click the (Rebuild All) toolbar button.
6-4

Reviewing the Source Code Changes
6.3 Reviewing the Source Code Changes

Double-click on the volume.c file in the Project View to see the source code
in the right half of the Code Composer Studio window.

Since you copied the volume.c file from the c:\ti\c6000\tutorial\volume4\ folder
to your working folder, the source code now contains the following differences
from the source code used in the previous chapter:

❏ Added the following to the list of included header files:

#include <rtdx.h>

❏ Added the following to the declarations:

RTDX_CreateInputChannel(control_channel);

Void loadchange(Void);

❏ Added the following call to the main function:

RTDX_enableInput(&control_channel);

❏ The following function is called by the PRD object you created in section
6.2, page 6-3. This is where the processor is controlled.

/* ======== loadchange ========
 * FUNCTION: Called from loadchange_PRD to
 * periodically update load value.
 * PARAMETERS: none.
 * RETURN VALUE: none.
 */
Void loadchange()
{
 static Int control = MINCONTROL;

 /* Read new load control when host sends it */
 if (!RTDX_channelBusy(&control_channel)) {
 RTDX_readNB(&control_channel, &control,
 sizeof(control));
 if ((control < MINCONTROL) || (control > MAXCONTROL)) {
 LOG_printf(&trace,"Control value out of range");
 }
 else {
 processingLoad = control;
 LOG_printf(&trace,"Load value = %d",processingLoad);
 }
 }
}

Analyzing Real-Time Behavior 6-5

Reviewing the Source Code Changes
This function uses RTDX API functions to change the load of the processing
signal in real time. Notice the following aspects of these changes:

❏ The call to RTDX_enableInput enables the input channel called
control_channel so that data can flow on it from the host to the target. At
run time, a Visual Basic host client writes a load control value on that
channel, thereby sending it to the target application.

❏ The call to RTDX_readNB asks the host to send a load control value on
the control_channel and stores it in the variable called control. This call is
non-blocking; it returns without waiting for the host to send the data. The
data is delivered when the host client writes to control_channel. From the
time of the call to RTDX_readNB until the data is written to the variable
control, this channel is busy, and no additional requests can be posted on
this channel (that is, calls to RTDX_readNB do not succeed). During that
time, the call to RTDX_channelBusy returns TRUE for control_channel.

❏ The processingLoad = control; statement sets the processing load to the
value specified by the control.
6-6

Using the RTDX Control to Change the Load at Run Time
6.4 Using the RTDX Control to Change the Load at Run Time

While you could test the program by putting a Probe Point within the
processing function and view graphs of input and output data (as you did in
section 4.3, page 4-6), you have already tested the signal processing
algorithm. At this stage of development, your focus is on making sure the
threads you have added can still meet their real-time deadlines. Also, Probe
Points halt the target and interfere with the real-time aspects of the test.

1) Choose File→Load Program. Select the program you just rebuilt,
volume.out, and click Open.

2) Choose Tools→DSP/BIOS→RTA Control
Panel.

3) Right-click on the RTA Control Panel and
deselect Allow Docking to display the
RTA Control Panel in a separate window.
Resize the window so that you can see
all of the check boxes shown here.

4) Put check marks in the boxes shown
here to enable SWI, PRD, and CLK
logging; SWI and PRD accumulators;
and global tracing on the host.

5) Choose Tools→DSP/BIOS→Execution
Graph. The Execution Graph area
appears at the bottom of the Code
Composer Studio window. You may want
to resize this area or display it as a
separate window.

6) Choose Tools→DSP/BIOS→Statistics View.
Analyzing Real-Time Behavior 6-7

Using the RTDX Control to Change the Load at Run Time
7) Right-click on the Statistics View area and choose Property Page from
the pop-up menu. Highlight the items shown here.

8) Click OK.

9) Resize the Statistics area to see the fields for the statistics you selected.

10) Right-click on the RTA Control Panel and choose Property Page from the
pop-up menu.

11) Set the Refresh Rate for Message Log/Execution Graph to 1 second and
the Refresh Rate for Statistics View/CPU Load Graph to 0.5 seconds.
Then click OK.

12) Choose Tools→RTDX.

13) Notice that RTDX is already enabled. This happened behind-the-scenes
in Step 2 when you opened a DSP/BIOS control. DSP/BIOS controls
configure and enable RTDX in continuous mode. In continuous mode,
RTDX does not record data received from the target in a log file (as it
does in non-continuous mode). This allows continuous data flow. (If your
program does not use DSP/BIOS, you can use the RTDX area to
configure and enable RTDX directly.)
6-8

Using the RTDX Control to Change the Load at Run Time
14) Using the Windows Explorer, run loadctrl.exe, which is located in your
working folder. The Load Control window appears.

Each mark on the slider changes the load value by 50, or about 50,000
instructions.

This simple Windows application was written using Visual Basic and
RTDX. If you have Visual Basic, you can examine the source files for the
loadctrl.exe application stored in the c:\ti\c6000\tutorial\volume4\ folder.
This application uses the following RTDX functions:

■ rtdx.Open("control_channel", "W") . Opens a control channel to
write information to the target when you open the application

■ rtdx.Close() . Closes the control channel when you close the
application

■ rtdx.WriteI2(dataI2, bufstate) . Writes the current value of the slider
control to control_channel so that the target program can read this
value and use it to update the load

15) Choose Debug→Run or click the (Run) toolbar button.

Notice that processing_SWI occurs once every 10 time ticks (and PRD
ticks). PRD_swi runs once every 2 PRD ticks. The loadchange_PRD runs
within the context of PRD_swi. These are the expected execution
frequencies.
Analyzing Real-Time Behavior 6-9

Using the RTDX Control to Change the Load at Run Time
PRD statistics are measured in PRD ticks. SWI statistics are measured
in instruction cycles. The Max and Average fields for loadchange_PRD
show that there is less than a full PRD tick between the time this function
needs to start running and its completion. (The actual numbers shown
may vary.)

16) Use the Load Control window to gradually increase the processing load.
(If you move the slider in the Load Control window while the DSP program
is halted, the new load control values are buffered on the host by RTDX.
These have no effect until the DSP application runs again and calls
RTDX_readNB to request updated load values from the host.)

17) Repeat step 16 until you see the Max and Average values for
loadchange_PRD increase and blue squares appear in the Assertions
row of the Execution Graph. Assertions indicate that a thread is not
meeting its real-time deadline.

What is happening? The Max value for loadchange_PRD increases when you
increase the load beyond a certain point. With the increased load, the
processing_SWI takes so long to run that the loadchange_PRD cannot begin
running until long past its real-time deadline.

When you increase the load so much that the low-priority idle loop is no
longer executed, the host stops receiving real-time analysis data and the
DSP/BIOS plug-ins stop updating. Halting the target updates the plug-ins with
the queued data.
6-10

Modifying Software Interrupt Priorities
6.5 Modifying Software Interrupt Priorities

To understand why the program is not meeting its real-time deadline, you
need to examine the priorities of the software interrupt threads.

1) Select Debug→Halt to halt the target.

2) In the Project View, double-click on the volume.cdb file to open it.

3) Highlight the SWI manager.
Notice the SWI object
priorities shown in the right
half of the window. (The
KNL_swi object runs a
function that runs the TSK
manager. This object must
always have the lowest SWI
priority. Tasks are not used in
this lesson.)

Because the PRD_swi and
processing_SWI objects both
have the same priority level,
the PRD_swi cannot preempt
the processing_SWI while it
is running.

The processing_SWI needs
to run once every 10
milliseconds and PRD_swi needs to run every 2 milliseconds. When the
load is high, processing_SWI takes longer than 2 milliseconds to run, and
so it prevents PRD_swi from meeting its real-time deadline.

4) To correct this problem, use
your mouse to select and drag
PRD_swi to a higher priority
level, such as Priority 2.

5) Select File→Save to save
your changes.

6) Select File→Close to close
volume.cdb.

7) Choose Project→Build or click
the (Incremental Build) toolbar button.

8) Select File→Reload Program.
Analyzing Real-Time Behavior 6-11

Things to Try
9) Select Debug→Run to run the example again. Use the RTDX-enabled
Windows application loadctrl.exe to change the load at run time (as in
section 6.4, page 6-7).

10) Notice that you can now increase the load without causing PRD_swi to
miss its real-time deadline.

Note: Starving Idle Loop

It is still possible to starve the idle loop by increasing the processing load to
maximum.

11) Before continuing to the next chapter (after completing section 6.6, page
6-12), perform the following steps to prepare for the next chapter:

■ Click (Halt) or press Shift F5 to stop the program.

■ Close all GEL dialogs, DSP/BIOS plug-ins, and source windows.

6.6 Things to Try

To further explore DSP/BIOS, try the following:

❏ When you increase the load, the Execution Graph shows that
processing_SWI requires more than one PRD tick to run. Does this mean
that processing_SWI is missing its real-time deadline? Recall that
processing_SWI must run every 10 milliseconds, while PRD ticks occur
every millisecond.

❏ What would happen if the processing function were called directly from a
hardware ISR rather than being deferred to a software interrupt? That
would cause the program to miss its real-time deadline because
hardware ISRs run at higher priority than the highest priority SWI object.
Recall that when the load is high, PRD_swi needs to preempt
processing_SWI. If processing_SWI is a hardware interrupt, it cannot be
preempted by PRD_swi.

❏ View the CPU Load Graph. Use the RTA Control Panel to turn the
statistics accumulators on and off. Notice that the CPU Load Graph
appears unaffected. This demonstrates that the statistics accumulators
place a very small load on the processor.

How much do the statistics accumulators affect the statistics for
processing_SWI? Watch the statistics view as you turn the statistics
accumulators on and off. The difference is a precise measurement of the
number of instructions each accumulator requires. Remember to
right-click and clear the statistics view to see the effect.

❏ Add calls to STS_set and STS_delta in the loadchange function like the
ones you added in section 5.7, page 5-17. How does this change affect
6-12

Learning More
the CPU load? Now, add calls to STS_set and STS_delta in the dataIO
function. How does this change affect the CPU load? Why? Consider the
frequency at which each function is executed. Even small increases to
the processing requirements for functions that run frequently can have
dramatic effects on CPU load.

6.7 Learning More

To learn more about the software interrupt priorities and the RTDX and PRD
modules, see the online help and the TMS320C6000 DSP/BIOS API
Reference Guide (which is provided as an Adobe Acrobat file).
Analyzing Real-Time Behavior 6-13

6-14

Chapter 7

Connecting to I/O Devices

This chapter introduces RTDX and DSP/BIOS techniques for implementing I/O.

In this chapter, you connect a program to an I/O device using RTDX and
DSP/BIOS. You also use the HST, PIP, and SWI modules of the DSP/BIOS API.

This chapter requires a physical board and cannot be carried out using a
software simulator. Also, this chapter requires the DSP/BIOS and RTDX
components of Code Composer Studio.

7.1 Opening and Examining the Project . 7–2

7.2 Reviewing the C Source Code . 7–3

7.3 Reviewing the Signalprog Application . 7–6

7.4 Running the Application . 7–7

7.5 Modifying the Source Code to Use Host Channels and Pipes . . . 7–10

7.6 More about Host Channels and Pipes . 7–12

7.7 Adding Channels and an SWI to the Configuration File 7–13

7.8 Running the Modified Program . 7–17

7.9 Learning More . 7–17

Topic Page
7-1

Opening and Examining the Project
7.1 Opening and Examining the Project

You begin by opening a project with Code Composer Studio and examining
the source code files and libraries used in that project.

1) If you installed Code Composer Studio in c:\ti, create a folder called
hostio in the c:\ti\myprojects folder. (If you installed elsewhere, create a
folder within the myprojects folder in the location where you installed.)

2) Copy all files from the c:\ti\c6000\tutorial\hostio1 folder to this new folder.

3) From the Windows Start menu, choose Programs→Code Composer
Studio ’C6000→CCStudio.

4) Choose Project→Open. Select the hostio.mak file in the folder you
created and click Open.

5) Expand the Project View by
clicking the + signs next to
Project, HOSTIO.MAK, and
Source. The hostiocfg.cmd file,
which was created when the
configuration was saved,
includes a large number of
DSP/BIOS header files. You do
not need to examine all these
header files.

The files used in this project
include:

■ hostio.c . This is the source
code for the main program.
You examine the source
code in the next section.

■ signalprog.exe . This Visual Basic application generates a sine wave
and displays the input and output signals.

■ slider.exe . This Visual Basic application allows you to control the
volume of the output signal.

■ hostiocfg.cmd . This linker command file is created when saving the
configuration file. The only object that has been added to the default
configuration is a LOG object called trace.

■ hostiocfg.s62 . This assembly file is created when saving the
configuration file.

■ hostiocfg.h62 . This header file is created when saving the
configuration file.
7-2

Reviewing the C Source Code
7.2 Reviewing the C Source Code

The example in this chapter simulates a DSP application that digitizes an
audio signal, adjusts its volume, and produces an analog output at the
adjusted volume.

For simplicity, no actual device is used to send and receive analog data in this
example. Instead, the example tests the algorithm using host-generated
digital data. Input and output data and volume control are transferred
between the host and the target using RTDX.

A Visual Basic application running on the host uses RTDX to generate the
input signal and display the input and output signals. This application allows
developers to test the algorithm without stopping the target. Similar methods
can be used to create display controls for real-time testing of other
applications. You examine the Visual Basic application in section 7.3, page
7-6.

1) Double-click on the hostio.c file in the Project View to see the source
code.

2) Notice the following aspects of this example:

■ Three RTDX channels are declared globally. The first input channel
controls the volume. The second input channel receives the input
signal from the host. The output channel sends the output signal from
the target to the host. (Input and output channels are named from the
perspective of the target application: input channels receive data
from the host, and output channels send data to the host.)

■ The call to RTDX_channelBusy returns FALSE if the channel is not
currently waiting for input. This indicates that the data has arrived and
can be read. As in Chapter 6, the call to RTDX_readNB is
non-blocking; it returns control to the DSP application without waiting
to receive the data from the host. The data is delivered
asynchronously when the host client writes it to the control_channel.

■ Calls to RTDX_Poll are used to communicate with the underlying
RTDX layer to read and write data.

■ The call to RTDX_read waits for data if the channel is enabled.

■ The call to RTDX_write writes the contents of the buffer to the output
RTDX channel if the channel is enabled.
Connecting to I/O Devices 7-3

Reviewing the C Source Code
■ While control_channel is enabled by the target via a call to
RTDX_enableInput, the other RTDX channels are not enabled from
this program. Instead, a host program described in the next section
enables these channels. This is because the slider control, which
uses the control_channel, is viewed as an integral part of the
application. By enabling this channel in the target program, you know
the channel is enabled while the application is running. In contrast,
the A2D and D2A channels are used to test the algorithm. Hence,
these channels are enabled and disabled by the host application.

#include <std.h>
#include <log.h>
#include <rtdx.h>

#include "target.h"

#define BUFSIZE 64
#define MINVOLUME 1

typedef Int sample; /* representation of a data sample from A2D */

/* Global declarations */
sample inp_buffer[BUFSIZE];
sample out_buffer[BUFSIZE];

Int volume = MINVOLUME; /* the scaling factor for volume control */

/* RTDX channels */
RTDX_CreateInputChannel(control_channel);
RTDX_CreateInputChannel(A2D_channel);
RTDX_CreateOutputChannel(D2A_channel);

/* Objects created by the Configuration Tool */
extern far LOG_Obj trace;

/*
 * ======== main ========
 */
Void main()
{
 sample *input = inp_buffer;
 sample *output = out_buffer;
 Uns size = BUFSIZE;

 TARGET_INITIALIZE(); /* Enable RTDX interrupt */

 LOG_printf(&trace,"hostio example started");

 /* enable volume control input channel */
 RTDX_enableInput(&control_channel);
7-4

Reviewing the C Source Code
 while (TRUE) {
 /* Read a new volume when the hosts send it */
 if (!RTDX_channelBusy(&control_channel)){
 RTDX_readNB(&control_channel, &volume, sizeof(volume));
 }

 while (!RTDX_isInputEnabled(&A2D_channel)){
 RTDX_Poll(); /* poll comm channel for input */
 }

 /*
 * A2D: get digitized input (get signal from the host through
 * RTDX). If A2D_channel is enabled, read data from the host.
 */
 RTDX_read(&A2D_channel, input, size*sizeof(sample));

 /*
 * Vector Scale: Scale the input signal by the volume factor to
 * produce the output signal.
 */
 while(size--){
 *output++ = *input++ * volume;
 }
 size = BUFSIZE;
 input = inp_buffer;
 output = out_buffer;

 /*
 * D2A: produce analog output (send signal to the host through
 * RTDX). If D2A_channel is enabled, write data to the host.
 */
 RTDX_write(&D2A_channel, output, size*sizeof(sample));

 while(RTDX_writing){
 RTDX_Poll(); /* poll comm channel for output */
 }
 }
}

Connecting to I/O Devices 7-5

Reviewing the Signalprog Application
7.3 Reviewing the Signalprog Application

The source code for the Visual Basic signalprog.exe application is available
in the signalfrm.frm file. Details about this application are provided in the
signalprog.pdf Adobe Acrobat file. In this section, you examine a few of the
routines and functions that are important for this example.

❏ Test_ON . This routine runs when you click the Test_ON button. It creates
instances of the RTDX exported interface for the input channel (toDSP)
and for the output channel (fromDsp). Then it opens and enables both of
these channels. The channels in the signalprog.exe application are the
same channels declared globally in the hostio.c source code.

This routine also clears the graphs and starts the timer used to call the
Transmit_Signal and Receive_Signal functions.

These global declarations made earlier in the Visual Basic source code
connected the READ_CHANNEL and WRITE_CHANNEL used in the
Test_ON routine to the D2A_channel and A2D_channel used in hostio.c:

' Channel name constants
Const READ_CHANNEL = "D2A_channel"
Const WRITE_CHANNEL = "A2D_channel"

❏ Test_OFF. This routine disables, closes, and releases the RTDX objects
created by Test_ON. It also disables the timer.

❏ Transmit_Signal . This function generates a sine wave signal and
displays it in the Transmitted Signal graph. Then, the function attempts to
transmit the signal to the target using the Write method of the toDSP
channel.

❏ Receive_signal . This function uses the ReadSAI2 method of the
fromDSP channel to read a signal from the target. It displays the signal in
the Received Signal graph.

❏ tmr_MethodDispatch_Timer . This routine calls the Transmit_Signal and
Receive_Signal functions. This routine is called at 1 millisecond intervals
after the timer object is enabled by the Test_ON routine.
7-6

Running the Application
7.4 Running the Application

1) Choose Project→Build or click the (Incremental Build) toolbar button.

2) Choose File→Load Program. Select hostio.out and click Open.

3) Choose Tools→RTDX.

4) Click Configure in the RTDX area of the window. In the General Settings
tab of the RTDX Properties dialog, select Continuous RTDX mode. Then,
click OK.

5) Change RTDX Disable to RTDX Enable in the RTDX area. This changes
the Configure button to Diagnostics.

6) Choose Tools→DSP/BIOS→Message Log. Right-click on the Message
Log area and choose Property Page from the pop-up window. Select
trace as the name of the log to monitor and click OK.

7) Choose Debug→Run or click the (Run) toolbar button.

8) Using Windows Explorer, run signalprog.exe and slider.exe. You see
these two Visual Basic applications.

The slider.exe program must be started after RTDX is enabled and the
program is running because it creates and opens the RTDX control
channel when you run the program. If RTDX is not enabled at this point,
slider.exe cannot open the channel.
Connecting to I/O Devices 7-7

Running the Application
The signalprog.exe program can be started at any point. It does not use
RTDX until you click the Test On button.

9) Resize the signalprog window so that it is taller. This allows you to see
the axis labels.

10) Click Test On in the signalprog window. This starts the input and output
channels.
7-8

Running the Application
11) Slide the control in the Volume Slider window. This changes the volume
of the output signal. Watch the amplitude of the Received Signal graph
change. (Only the scale values to the left and right of the graph change.
The graph changes scale automatically to accommodate the size of the
sine wave and the size of the window.)

Note: Initial Setting of Volume Slider

The initial setting of the Volume Slider bar is not synchronized with the
application. They are synchronized the first time you move the slider bar.

12) Close the Volume Slider application. This stops the input and output
channels.

13) Click Test OFF in the signalprog window. This closes the control channel.

14) Click (Halt) or press Shift F5 to stop the program.

15) You now see the “hostio example started” message from the call to
LOG_printf in the Message Log area. You did not see this message
earlier because the entire program runs within the main function.
DSP/BIOS communicates with the host PC within the idle loop. Until a
program returns from main, it never enters the idle loop. Therefore, if you
want to see the effects of DSP/BIOS calls at run-time, your program
should perform its functions after returning from main. The modified
version of hostio.c used in the next section shows this technique.
Connecting to I/O Devices 7-9

Modifying the Source Code to Use Host Channels and Pipes
7.5 Modifying the Source Code to Use Host Channels and Pipes

Now you modify the example to use the host channels and pipes provided
with DSP/BIOS. The modified example still tests your DSP algorithm in real
time. Rather than generating a sine wave on the host, this time the data
comes from a host file.

The HST module provides a more direct path toward implementing I/O with
peripheral devices. The HST module uses the PIP module for host I/O. You
can use the PIP module API with minimal modifications to the source code
once the I/O devices and ISRs are ready for testing.

1) Copy only the following files from the c:\ti\c6000\tutorial\hostio2\ folder to
your working folder. (Note that you should not copy all the files from the
hostio2 folder. In particular, do not copy the hostio.cdb file.)

■ hostio.c . The source code has been modified to use the HST and
PIP modules of the DSP/BIOS API instead of RTDX to transfer the
input and output signals

■ input.dat . This file contains input data

2) Double-click on the hostio.c file in the Project View to see the source code
in the right half of the Code Composer Studio window. The source code
now contains the following differences from the source code used earlier
in this chapter:

■ Added the following to the list of included header files:

#include <hst.h>
#include <pip.h>

■ Removed the BUFSIZE definition, the global declarations of
inp_buffer and out_buffer, and the RTDX input and output channel
declarations. This example retains the RTDX channel used to control
the volume.

■ Moved the input and output functionality from a while loop in the main
function to the A2DscaleD2A function.

/* ======== A2DscaleD2A ======== */
/* FUNCTION: Called from A2DscaleD2A_SWI to get digitized data
 * from a host file through an HST input channel,
 * scale the data by the volume factor, and send
 * output data back to the host through an HST
 * output channel.
 * PARAMETERS: Address of input and output HST channels.
 * RETURN VALUE: None. */
7-10

Modifying the Source Code to Use Host Channels and Pipes
Void A2DscaleD2A(HST_Obj *inpChannel, HST_Obj *outChannel)
{
 PIP_Obj *inp_PIP;
 PIP_Obj *out_PIP;
 sample *input;
 sample *output;
 Uns size;

 inp_PIP = HST_getpipe(inpChannel);
 out_PIP = HST_getpipe(outChannel);

 if ((PIP_getReaderNumFrames(inp_PIP) <= 0) ||
 (PIP_getWriterNumFrames(out_PIP) <= 0)) {
 /* Software interrupt should not have been triggered! */
 error();
 }

 /* Read a new volume when the hosts send it */
 if (!RTDX_channelBusy(&control_channel))
 RTDX_readNB(&control_channel, &volume, sizeof(volume));

 /* A2D: get digitized input (get signal from the host
 * through HST). Obtain input frame and allocate output
 * frame from the host pipes. */

 PIP_get(inp_PIP);
 PIP_alloc(out_PIP);

 input = PIP_getReaderAddr(inp_PIP);
 output = PIP_getWriterAddr(out_PIP);
 size = PIP_getReaderSize(inp_PIP);

 /* Vector Scale: Scale the input signal by the volume
 * factor to produce the output signal. */
 while(size--){
 *output++ = *input++ * volume;
 }

 /* D2A: produce analog output (send signal to the host
 * through HST). Send output data to the host pipe and
 * free the frame from the input pipe. */
 PIP_put(out_PIP);
 PIP_free(inp_PIP);
}

The A2DscaleD2A function is called by the A2DscaleD2A_SWI
object. You create this SWI object in the next section and make it call
the A2DscaleD2A function.

The A2DscaleD2A_SWI object passes two HST objects to this
function. This function then calls HST_getpipe to get the address of
the internal PIP object used by each HST object.
Connecting to I/O Devices 7-11

More about Host Channels and Pipes
Calls to PIP_getReaderNumFrames and PIP_getWriterNumFrames
then determine whether there is at least one frame in the input pipe
that is ready to be read and one frame in the output pipe that can be
written to.

Using the same RTDX calls used in section 7.2, page 7-3, the
function gets the volume setting from the RTDX control channel.

The call to PIP_get gets a full frame from the input pipe. The call to
PIP_getReaderAddr gets a pointer to the beginning of the data in the
input pipe frame and PIP_getReaderSize gets the number of words
in the input pipe frame.

The call to PIP_alloc gets an empty frame from the output pipe. The
call to PIP_getWriterAddr gets a pointer to the location to begin
writing data to in the output pipe frame.

The function then multiplies the input signal by the volume and writes
the results to the frame using the pointer provided by
PIP_getWriterAddr.

The call to PIP_put puts the full frame into the output pipe. The call
to PIP_free recycles the input frame so that it can be reused the next
time this function runs.

■ Added an error function, which writes an error message to the trace
log and then puts the program in an infinite loop. This function runs if
A2DscaleD2A runs when there are no frames of data available for
processing.

7.6 More about Host Channels and Pipes

Each host channel uses a pipe internally. When you are using a host channel,
your target program manages one end of the pipe and the Host Channel
Control plug-in manages the other end of the pipe.

When you are ready to modify your program to use peripheral devices other
than the host PC, you can retain the code that manages the target’s end of
the pipe and add code in functions that handle device I/O to manage the other
end of the pipe.
7-12

Adding Channels and an SWI to the Configuration File
7.7 Adding Channels and an SWI to the Configuration File

The A2DscaleD2A function is called by an SWI object and uses two HST
objects. You create these objects in this section. (The hostio.cdb file in the
c:\ti\c6000\tutorial\hostio2\ folder already contains these objects.)

The A2DscaleD2A function also references two PIP objects, but these
objects are created internally when you create the HST objects. The
HST_getpipe function gets the address of the internal PIP object that
corresponds to each HST object.

1) In the Project View, double-click on the HOSTIO.CDB file to open it.

2) Right-click on the HST manager and choose Insert HST.

Notice that there are HST objects called RTA_fromHost and RTA_toHost.
These objects are used internally to update the DSP/BIOS controls.

3) Rename the new HST0 object to input_HST.

4) Right-click on the input_HST object and choose Properties from the
pop-up menu. Set the following properties for this object and click OK.
Connecting to I/O Devices 7-13

Adding Channels and an SWI to the Configuration File
■ mode . This property determines which end of the pipe the target
program manages, and which end the Host Channel Control plug-in
manages. An input channel sends data from the host to the target.
An output channel sends data from the target to the host.

■ framesize . This property sets the size of each frame in the channel.
Use 64 words—the same value as the BUFSIZE defined in section
7.2, page 7-3.

■ notify, arg0, arg1 . These properties specify the function to run when
this input channel contains a full frame of data and the arguments to
pass to that function. The SWI_andn function provides another way
to manipulate a SWI object’s mailbox.

In Chapter 5, you used the SWI_dec function to decrement the
mailbox value and run the SWI object’s function when the mailbox
value reached zero.

The SWI_andn function treats the mailbox value as a bitmask. It
clears the bits specified by the second argument passed to the
function. So, when this channel contains a full frame (because the
target filled a frame), it calls SWI_andn for the A2DscaleD2A_SWI
object and causes it to clear bit 1 of the mailbox.
7-14

Adding Channels and an SWI to the Configuration File
5) Insert another HST object and rename it output_HST.

6) Set the following properties for the output_HST object and click OK.

When this output channel contains an empty frame (because the target
read and released a frame), it uses SWI_andn to clear the second bit of
the mailbox.
Connecting to I/O Devices 7-15

Adding Channels and an SWI to the Configuration File
7) Right-click on the SWI manager and choose Insert SWI.

8) Rename the new SWI0 object to A2DscaleD2A_SWI.

9) Set the following properties for A2DscaleD2A_SWI and click OK.

■ function . This property causes the object to call the A2DscaleD2A
function when this software interrupt is posted and runs.

■ mailbox . This is the initial value of the mailbox for this object. The
input_HST object clears the first bit of the mask and the output_HST
object clears the second bit of the mask. When this object runs the
A2DscaleD2A function, the mailbox value is reset to 3.

■ arg0, arg1 . The names of the two HST objects are passed to the
A2DscaleD2A function.

10) Choose File→Close. You are asked whether you want to save your
changes to hostio.cdb. Click Yes. Saving the configuration also generates
hostiocfg.cmd, hostiocfg.s62, and hostiocfg.h62.
7-16

Running the Modified Program
7.8 Running the Modified Program

1) Choose Project→Rebuild All or click the (Rebuild All) toolbar button.

2) Choose File→Load Program. Select the program you just rebuilt,
hostio.out, and click Open.

3) Choose Tools→DSP/BIOS→Host Channel Control. The Host Channel
Control lists the HST objects and allows you to bind them to files on the
host PC and to start and stop the channels.

4) Choose Debug→Run or click the (Run) toolbar button.

5) Right-click on the input_HST channel and choose Bind from the pop-up
menu.

6) Select the input.dat file in your working folder and click Bind.

7) Right-click on the output_HST channel and choose Bind from the pop-up
menu.

8) Type output.dat in the File Name box and click Bind.

9) Right-click on the input_HST channel and choose Start from the pop-up
menu.

10) Right-click on the output_HST channel and choose Start from the pop-up
menu. Notice that the Transferred column shows that data is being
transferred.

11) When the data has been transferred, click (Halt) or press Shift F5 to
stop the program.

7.9 Learning More

To learn more about the RTDX, HST, PIP, and SWI modules, see the online
help or the TMS320C6000 DSP/BIOS User’s Guide (which is provided as an
Adobe Acrobat file).
Connecting to I/O Devices 7-17

7-18

This is a draft version printed from file: tutorialix.fm on 2/26/0
Index
A
animating program 4-10
archiver 1-5
.asm file 1-16
assembler 1-5
assembly optimizer 1-5
assembly vs. C 5-7
assembly, viewing with C source 2-12
assertions 6-10
ATM module 1-10

B
bin folder 1-15
bios folder 1-15
breakpoint

creating 2-9
deleting 2-11
stepping from 2-10

building application 2-6

C
C compiler 1-5
.c file 1-16
C vs. assembly 5-7
C62 module 1-10
c6201 vs. c6701 iv
C6X_A_DIR environment variable 1-17, 2-4
C6X_C_DIR environment variable 1-17, 2-4
.cdb file 1-16
cdb file 3-3
cgtools folder 1-15
chip type 3-4
CLK module 1-10

manager properties 5-8
CLK_gethtime function 5-17
CLK_getltime function 5-20
clock

viewing 4-18

clock manager 5-8
clock, enabling 2-12
.cmd file 1-16
cmd file 2-3, 3-3
Code Composer Studio

vs. Code Composer Studio Simulator 1-2
COFF file 1-5
color, modifying 2-9, 4-13
command file 2-3
configuration file

adding to project 3-4
creating 3-2
generated files 3-3
opening 5-6
saving 3-3

CPU Load Graph 5-12
cross-reference utility 1-5

D
datatypes for DSP/BIOS 5-3
DEV module 1-10
development cycle 1-2
development flow diagram 1-4
directories 1-15

search path 2-4
docs folder 1-15
DOS environment space, increasing 1-17
drivers folder 1-15
DSP type 3-4
DSP/BIOS

API modules 1-8
datatypes 5-3
header files 3-5

E
edit variable 2-11
enable clock 2-12
environment space

increasing 1-17
Index-1

 Index
environment variables
C6X_A_DIR 1-17
C6X_C_DIR 1-17
PATH 1-17

EPROM programmer 1-5
examples folder 1-15
Execution Graph 5-10
explicit instrumentation 5-17

F
file I/O 4-7
file streaming 1-8
floating-point support iv
folders 1-15

search path 2-4
font, setting 2-4
function names 5-7

G
GEL

functions 4-15
gel folder 1-15
generated files 3-3
graph

clearing 4-9
viewing 4-9

H
.h file 1-16
halting program

at breakpoint 2-9
header files 3-5
hello1 example 2-2
hello2 example 3-2
hello.c 2-4, 3-5
hex conversion utility 1-5
Host Channel Control 7-17
host operation 5-20
hostio1 example 7-2
hostio2 example 7-10
hostio.c 7-3, 7-10
HST module 1-10, 7-10

creating object 7-13
HST_getpipe function 7-11
HWI module 1-10

object properties 5-8

I
IDL module 1-10, 3-10
idle loop 3-5, 5-3
ifdef symbols 2-7
implicit instrumentation 5-15
include files 3-5
inserting an object 3-3
instruction cycles 2-12

profiling 2-13
integrated development environment 1-6
interrupts

disabled vs. enabled 3-10
software 5-3

K
KNL_swi object 6-4

L
LCK module 1-10
.lib file 1-16
libraries

adding to project 2-3
runtime-support 1-5

library-build utility 1-5
linker 1-5
linker command file 2-3, 3-3
loading program 2-6
LOG module 1-10
LOG object

creating 3-3
declaring 3-5

LOG_printf function 3-5

M
mailbox value 5-9
main function 3-5
.mak file 1-16
MBX module 1-10
MEM module 1-11
Message Log 3-6
mixed source/ASM 2-12
modules, list of 1-10
myprojects folder 1-15
Index-2

Index
N
naming conventions 5-7
new project 2-2

O
.obj file 1-16
object

editing properties 5-7
inserting 3-3
renaming 3-3

options
color 2-9, 4-13
font 2-4

options for project 2-7
.out file 1-16

P
PATH environment variable 1-17
performance monitoring 1-8
PIP module 1-11, 7-10
PIP_alloc function 7-11
PIP_free function 7-11
PIP_get function 7-11
PIP_getReaderAddr function 7-11
PIP_getReaderNumFrames function 7-11
PIP_getReaderSize function 7-11
PIP_getWriterAddr function 7-11
PIP_getWriterNumFrames function 7-11
PIP_put function 7-11
plug-ins

DSP/BIOS 1-8
RTDX 1-12
third party 1-14

plugins folder 1-15
PRD module 1-11

adding object 6-3
PRD_clock CLK object 6-4
PRD_swi object 6-4
PRD_tick function 6-4
preprocessor symbols 2-7
priorities of software interrupts 6-11
Probe Point

connecting 4-8
creating 4-6

profile clock 2-12
profile-point

creating 2-12
viewing statistics 2-13

program
loading onto target 2-6

running 2-6
program tracing 1-8
project

adding files 2-3
building 2-6
creating new 2-2
options 2-7
viewing files in 2-3

project management 1-7
properties

changing 5-7
viewing 5-6

Q
QUE module 1-11

R
Real-Time Data Exchange

See RTDX
real-time deadlines 5-12, 6-10
renaming an object 3-3
resetting DSP 2-5
RTDX

channel declaration 7-3
host interface 1-12
module 1-11
module, configuring 6-8, 7-7
plug-ins 1-12

rtdx folder 1-15
RTDX_channelBusy function 6-5, 7-3
RTDX_enableInput function 6-5, 7-4
RTDX_read function 7-3
RTDX_readNB function 6-5
RTDX_write function 7-3
rtdx.Close 6-9
rtdx.Open 6-9
rtdx.WriteI4 6-9
rts6201.lib 2-3
rts6701.lib 2-3
running 2-6

animation 4-10
to cursor 2-10
to main 5-10

running Code Composer Studio 2-2
runtime-support libraries 1-5

S
saving 2-8
search path 2-4
Index-3

 Index
sectti utility 3-10
SEM module 1-11
signalprog.exe 7-6
simulator iii, 1-2
SIO module 1-11
slider.exe 7-7
source files

adding to project 2-3
mixed C/assembly view 2-12

starting Code Composer Studio 2-2
statistics

units 5-20, 6-10
viewing with profile-points 2-13

Statistics View 5-15
step commands 2-10
structure

watch variables 2-11
STS module 1-11

adding instrumentation 5-17
Statistics View 5-15

STS_delta function 5-17
STS_set function 5-17
SWI module 1-11

object properties 5-9
priorities 6-11

SWI_andn function 7-14
SWI_dec function 5-4
symbols, defining 2-7
syntax errors 2-8
SYS module 1-11

T
third party plug-ins 1-14
time/frequency graph 4-9
TRC module 1-11

TRC_query function 5-17
troubleshooting 2-5
TSK module 1-11
tutorial folder 1-15

U
underscore 5-7
uninstall folder 1-15
USER0 tracing 5-18
utility folder (bin) 1-15

V
variables, editing 2-11
vectors.asm 2-3
view statistics 2-13
Visual Basic application 6-2
volume1 example 4-2
volume2 example 5-2
volume3 example 6-2
volume4 example 6-2
volume.c 4-4, 5-3, 6-5

W
watch variable

adding 2-9
changing value 2-11
removing 2-11
structures 2-11

.wks file 1-16
Index-4

	Read This First
	About This Manual
	Notational Conventions
	Related Documentation from Texas Instruments
	Related Documentation
	Trademarks

	Contents
	Code Composer Studio Overview
	1.1 Code Composer Studio Development
	1.2 Code Generation Tools
	1.3 Code Composer Studio Integrated Development En...
	1.3.1 Program Code Editing Features
	1.3.2 Application Building Features
	1.3.3 Application Debugging Features

	1.4 DSP/BIOS Plug-ins
	1.4.1 DSP/BIOS Configuration
	1.4.2 DSP/BIOS API Modules

	1.5 Hardware Emulation and Real-Time Data Exchange...
	1.6 Third-Party Plug-ins
	1.7 Code Composer Studio Files and Variables
	1.7.1 Installation Folders
	1.7.2 File Extensions
	1.7.3 Environment Variables
	1.7.4 Increasing DOS Environment Space

	Developing a Simple Program
	2.1 Creating a New Project
	2.2 Adding Files to a Project
	2.3 Reviewing the Code
	2.4 Building and Running the Program
	2.5 Changing Program Options and Fixing Syntax Err...
	2.6 Using Breakpoints and the Watch Window
	2.7 Using the Watch Window with Structures
	2.8 Profiling Code Execution Time
	2.9 Things to Try
	2.10 Learning More

	Developing a DSP/BIOS Program
	3.1 Creating a Configuration File
	3.2 Adding DSP/BIOS Files to a Project
	3.3 Testing with Code Composer Studio
	3.4 Profiling DSP/BIOS Code Execution Time
	3.5 Things to Try
	3.6 Learning More

	Testing Algorithms and Data from a File
	4.1 Opening and Examining the Project
	4.2 Reviewing the Source Code
	4.3 Adding a Probe Point for File I/O
	4.4 Displaying Graphs
	4.5 Animating the Program and Graphs
	4.6 Adjusting the Gain
	4.7 Viewing Out-of-Scope Variables
	4.8 Using a GEL File
	4.9 Adjusting and Profiling the Processing Load
	4.10 Things to Try
	4.11 Learning More

	Debugging Program Behavior
	5.1 Opening and Examining the Project
	5.2 Reviewing the Source Code
	5.3 Modifying the Configuration File
	5.4 Viewing Thread Execution with the Execution Gr...
	5.5 Changing and Viewing the Load
	5.6 Analyzing Thread Statistics
	5.7 Adding Explicit STS Instrumentation
	5.8 Viewing Explicit Instrumentation
	5.9 Things to Try
	5.10 Learning More

	Analyzing Real-Time Behavior
	6.1 Opening and Examining the Project
	6.2 Modifying the Configuration File
	6.3 Reviewing the Source Code Changes
	6.4 Using the RTDX Control to Change the Load at R...
	6.5 Modifying Software Interrupt Priorities
	6.6 Things to Try
	6.7 Learning More

	Connecting to I/O Devices
	7.1 Opening and Examining the Project
	7.2 Reviewing the C Source Code
	7.3 Reviewing the Signalprog Application
	7.4 Running the Application
	7.5 Modifying the Source Code to Use Host Channels...
	7.6 More about Host Channels and Pipes
	7.7 Adding Channels and an SWI to the Configuratio...
	7.8 Running the Modified Program
	7.9 Learning More

	Index

