
ECE4703 B Term 2008 Laboratory Assignment 5

Project Code and Report Due by 3:00pm 11-Dec-2008

The goals of this laboratory assignment are:

• to expose you to frame-based digital signal processing,

• to familiarize you with computationally efficient techniques that achieve performance gains
not through compiler optimization but, rather, through clever algorithm optimization, and

• to allow you to experimentally verify the computational performance of the FFT versus the
DFT.

1 Problem Statement

The FFT is an efficient algorithm for calculating the DFT and is used in a variety of signal processing
applications. The most common implementation method for the FFT is the Cooley-Tukey algorithm
where a large DFT is broken down into smaller DFTs. The outputs of the smaller DFTs are
reassembled in a special way to form the final result and the overall amount of computation required
is much less than a direct calculation of the DFT.

This assignment has three parts. First, you will implement the basic direct DFT, run it in
real-time for various values of N , and profile the execution time to observe the computational
trends. The second part of the assignment is to implement the radix-2 decimation-in-time Cooley-
Tukey FFT, run it in real-time for various values of N , and profile the execution time to observe
the computational trends. Finally, you will compare your results to TI’s optimized FFT code,
primarily in the function cfftr2 dit.sa. All math in this assignment should be performed in
single-precision floating point.

2 Part I: Implementation of the DFT

The first part of this assignment is to implement the direct DFT as a function written in C. You
will probably want to include the header file math.h to allow for pre-computation of the sin and
cos terms needed in for the complex “twiddle-factors” of the DFT (do not compute these twiddle
factors dynamically in your DFT function as that will be quite slow). Your function must be
written generally to allow for any value of N that is an integer power of 2, i.e. N = 2, 4, 8, 16, 32....

To facilitate comparisons, you should adhere to the calling convention used by TI’s optimized
FFT code. Specifically, your function call should work like:

* void your_dft(float *x, const float *w, short N)

*

1

* x Pointer to Array of Dimension 2*N elements holding

* Input to and Outputs from function your_dft()

* w Pointer to an array holding the complex twiddle factors

* N Number of complex points in x

Note that everything is globally declared. The input to the DFT is in x and the result of the DFT
is returned in x (the input is overwritten by the DFT/FFT function). You should compute the
sin/cos portions of the “twiddle factors” prior to the DFT function call and store them in W . All
input/output arrays and twiddle factors should be single-precision floating point datatypes.

A suggested flow diagram for the assignment is shown in Figure 1. It is recommended that you
use a double buffering technique here since all processing in this assignment is frame-based (your
Kehtarnavaz textbook discusses a triple-buffering technique in Lab 6, but the third buffer can
be eliminated since the DFT/FFT output overwrites the DFT/FFT input). Let the left channel
represent the real part of each input sample and let the right channel represent the imaginary
part of each input sample. The (complex-valued) incoming samples are placed in one buffer (with
2N float elements) and the last complete frame of (complex-valued) samples is stored in another
buffer (with 2N float elements). Your ISR will simply accept new input samples and fill up
the incoming buffer; no processing other than incrementing a global index and checking for a full
buffer is performed in the ISR. When the incoming buffer is full, you should swap buffers (the
“incoming” buffer becomes the “complete” buffer, and vice versa) and begin computing the DFT
on the complete buffer in your main code. Your DFT code will compute 2N outputs and will
overwrite the current “complete” buffer. Your ISR will also be running while you compute the
DFT and will be filling up the new incoming buffer. To run in real-time, you need to complete
your computation of the DFT before the next incoming buffer is full. You do not need to send any
output signals to the AIC23 codec.

Upon completion of the DFT, you should clear any flags that would initiate another DFT and
check the status of DIP switch 0. If it has been pressed, you should compute the magnitude of the
DFT and store the result in a third buffer. This buffer will have N float elements. You can then
plot the magnitude of the DFT output using CCS’s plotting capabilities. After you are certain
that your DFT is working correctly, profile the execution of your DFT function with and without
compiler optimization for various values of N . Increase N until the DFT can no longer execute in
real-time.

Note that, when DIP switch 0 is not pressed, your code should be continuously filling input
buffers and computing a DFT each time the buffer is filled. Your code should not be computing the
magnitude of the DFT unless DIP switch 0 is pressed since computing the magnitude of the DFT
will take a lot of extra cycles and will prevent you from increasing N to interesting values. The
magnitude function in the code is only to allow for verification that the DFT is working correctly;
it should not be running during the normal operation of your code.

To test your DFT, configure the AIC23 codec for 8kHz sampling rate and connect an interesting
test signal like a 500Hz square wave to the line-in jack.

3 Part II: Implementation of the FFT

In this part, you will replace your DFT function from Part I with a Cooley-Tukey radix-2 decimation-
in-time FFT function. To receive full credit for this part of the assignment, you are required to

codec interrupt

place L+R samples

into “incoming” bu!er

is “incoming” bu!er full?

swap “incoming” and

“complete” bu!ers

(and set newbu!er "ag)

increment “incoming”

bu!er index

return to main code

yes

no

MAIN CODE

the usual initialization

plus pre-computation of

DFT/FFT twiddle factors

check newbu!er "ag

call DFT/FFT function

(this is the function

you pro#le)

check DIP switch 0

compute DFT/FFT

magnitude

clear newbu!er "ag

not set

set

pressed

not pressed

Figure 1: Suggested logical flow of your DFT/FFT code.

support at least N = 2, 4, 8, 16, 32. It may be tricky to write one general function that works for
any value of N , hence it is acceptable to write separate functions, e.g. fft2, fft4, fft8, If
you choose to take this approach, it is also acceptable to have your higher-numbered FFT func-
tions call the lower number functions, reassembling the outputs of the lower numbered functions
appropriately.

Make sure your FFT code is called identically to the DFT code in Part I. Test and profile your
FFT as described in Part I. The output of the FFT should be identical to that of the DFT but,
for large enough N , you should see that your FFT executes faster than the DFT.

4 Part III: Using TI’s Optimized FFT

Due to the wide variety of applications for the FFT, TI provides an optimized linear assembly
function to implement FFTs on the C6x. In this part of the assignment, you will evaluate the
performance of TI’s routine with respect to your DFT and FFT code.

You will need three functions to use TI’s optimized FFT routines. These functions are cfftr2 dit,
digitrev index, and bitrev. These files can be found in various places in the myprojects direc-
tory, e.g. the FFTr2 project folder. You should read the header comments in these files to make
sure that you know how to use them correctly.

Test and profile TI’s FFT as described in Part I. Increase N until the FFT can no longer execute
in real-time. Does compiler optimization affect the results?

5 In Lab

You will work with the same lab partner as in the prior laboratory assignments. Please contact
the instructor if your lab partner has dropped the course or if you have concerns about your lab
partner’s performance on the prior assignment.

6 Suggested Procedure for Software Design

1. Begin by at least skimming Chapter 9 and Lab 6 in the Kehtarnavaz text. There are several
good examples in here that may give you ideas on how to start the assignment.

2. Make sure your DFT code works before progressing to the FFT. You will need the DFT to
check the results of the FFT, so it important that you fully test your DFT code and are
confident that it is working correctly.

3. Write and test your FFT code for smaller values of N first. Recall that, at N = 2, the FFT
and the DFT perform the same calculations. Make sure your FFT code gives exactly the same
output as your DFT code. If it doesn’t then one (or both) functions are wrong. If you want
to check your answers, you can use Matlab, Chassaing’s or Kehtarnavaz’s example code, or
even TI’s optimized code (which we assume is correct) to compute a “known good” FFT for
comparison.

4. When writing your FFT code for higher values of N , you may want to leverage the code
you’ve already written. For example, fft8 could split the input into odd/even parts and
then call fft4 twice. Similarly, fft4 could then split its input into odd/even parts and then

call fft2 twice. It is possible to implement this sort of functionality with recursive function
calls, but this is an advanced concept and is not required.

7 Code Submission and Specific Items to Discuss in Your Report

You can submit one project for the entire assignment where the DFT, FFT, or TI’s FFT function
is simply selected by adding/removing comments to the main function. Make sure that there
are enough comments to make this obvious to the grader. Your code will be tested for correct
functionality and profiled by the grader for select values of N to determine if the profiling results
in your report are accurate.

At a minimum, you should include the following results in your report:

1. Average cycles of your DFT function with and without compiler optimization for N =
2, 4, 8, 16, 32, What is the largest value of N that can run in real-time?

2. Average cycles of your FFT function with and without compiler optimization for N =
2, 4, 8, 16, 32, What is the largest value of N that can run in real-time?

3. Average cycles of TI’s optimized FFT function (sum of all three functions required to fully
implement the FFT) with and without compiler optimization for N = 2, 4, 8, 16, 32, What
is the largest value of N that can run in real-time?

You should determine whether inclusive or exclusive cycles should be used in your results and jus-
tify your decision in your report. Do your profiling results follow the predicted trends of O(N2)
and O(N log2(N))? How does your FFT code compare to TI’s optimized routines, with and with-
out compiler optimization? Your report should also discuss any special tricks that you used to
implement your FFT code.

