
ECE4703 B Term 2010 Laboratory Assignment 5

Project Code and Report Due by 3:00pm 09-Dec-2010

The goals of this laboratory assignment are:

• to develop an understanding of frame-based digital signal processing,

• to familiarize you with computationally efficient techniques that achieve performance gains
not through compiler optimization or architectural optimization but, rather, through clever
algorithm optimization,

• to allow you to experimentally verify asymptotic complexity predictions, and

• to allow you to apply the FFT to a practical signal parameter estimation problem.

1 Background

The problem of estimating the frequency of a noisy sinusoidal signal occurs in a variety of ap-
plications including radar and communications. In this assignment, we consider a system with a
complex-valued discrete-time observation

z[n] = a exp(jΩn + φ) + w[n] = a cos(Ωn + φ)
︸ ︷︷ ︸

x[n]

+j a sin(Ωn + φ)
︸ ︷︷ ︸

y[n]

+w[n]

for n = 0, 1, . . . , N − 1 where Ω = ω/fs is the normalized frequency (radians/sec) that we wish to
estimate, φ is the unknown phase (radians) of the observation at time n = 0, a is the amplitude of
the complex exponential, w[n] is complex additive noise, and N is the total number samples in the
observation. In typical scenarios with uncorrelated zero-mean Gaussian distributed complex noise,
the maximum-likelihood frequency estimator is

Ω̂ML = arg max
λ∈[0,π)

|A(λ)|2 (1)

where

A(λ) =
N−1∑

n=0

z[n] exp(−jλn) (2)

Note that A(λ) can be efficiently computed for discrete λ = k2π
N

where k = 0, . . . , N − 1 using the
N -point FFT when N is an integer power of two. These discrete frequencies, however, may not
provide fine enough enough resolution for frequency estimates in some applications, hence it is often
the case that the following four-step strategy is used to provide a more accurate approximation to
the solution of (1):
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1. Given N and z[n] for n = 0, . . . , N − 1, compute the N -point FFT

A[k] = A

(
k2π

N

)

=

N−1∑

n=0

z[n] exp

(

−j
k2π

N
n

)

= B[k]
︸︷︷︸

real part

+ j C[k]
︸︷︷︸

imaginary part

(3)

for k = 0, . . . , N − 1.

2. Compute the squared magnitude of A[k] as

U [k] = |A[k]|2 = B2[k] + C2[k] k = 0, . . . ,
N

2
− 1. (4)

Note that, by working with squared magnitudes, we avoid having to calculate any compu-
tationally intensive square roots. Also note that you only need to compute these squared
magnitudes over the first half of A[k] (why?).

3. Compute the coarse frequency estimate by finding the index of the maximum of U [k], i.e.

k̂ = arg max
k∈{0,..., N

2
−1}

U [k]. (5)

Denote the coarse normalized frequency estimate as Ω̂coarse = 2πk̂
N

. Note that the coarse

non-normalized frequency estimate is ω̂coarse = fs · Ω̂coarse.

4. Generate a fine frequency estimate using a refinement technique with the coarse estimate as
the initial guess. In practice, a variety of refinement techniques can be used, e.g. Newton’s
method, the secant method, or the bisection method. In this assignment, we will use a rela-
tively simple technique called quadratic interpolation to generate the fine frequency estimate.
The basic idea is as follows. You provide three input/output pairs {x1, y1}, {x2, y2}, {x3, y3},
and compute the quadratic polynomial coefficients a, b, c such that

yi = ax2
i + bxi + c (6)

for i = 1, 2, 3. Intuitively, what you are doing here is finding a quadratic polynomial that
interpolates the points around the maximum in the squared magnitude of the FFT as shown
in Figure 1. The inputs are the normalized frequencies in the neighborhood of the maximum,
i.e.

{x1, x2, x3} =

{

2π(k̂ − 1)

N
,
2πk̂

N
,
2π(k̂ + 1)

N

}

. (7)

The outputs are the squared FFT magnitudes at these frequencies, i.e.

{y1, y2, y3} =
{

U [k̂ − 1], U [k̂], U [k̂ + 1]
}

. (8)

Once you’ve determined the quadratic polynomial coefficients a, b, c that fit these input/out-
put pairs, you can find the maximum of the function f(x) = ax2 + bx + c using standard
calculus techniques. This maximum corresponds to our fine normalized frequency estimate,
and can be expressed as

Ω̂fine =
−b

2a
≈ Ω̂ML. (9)

The fine non-normalized frequency estimate can then be computed as ω̂fine = fs · Ω̂fine.
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Figure 1: The principle of quadratic interpolation.

If done correctly, this procedure can yield very accurate results in which the RMS frequency error of
the non-normalized fine estimates is much less than one part per million (depending on the length
of the observation and the amount of background noise).

2 Problem Statement

In this assignment, you will perform frequency estimation in real-time by using TI’s optimized FFT
code to perform the first step of the maximum likelihood frequency estimator and then writing your
own code to perform steps 2–4. All math in this assignment should be performed in single-precision
floating point and all of your code will be written in C.

A suggested flow diagram for the assignment is shown in Figure 2. It is recommended that
you use a double buffering technique here since all processing in this assignment is frame-based
(your Kehtarnavaz textbook discusses a triple-buffering technique in Lab 6, but the third buffer
can be eliminated since the FFT output overwrites the FFT input). Let the left channel represent
the real part of each input sample (x[n]) and let the right channel represent the imaginary part of
each input sample (y[n]). The (complex-valued) incoming samples are placed in one buffer (with
2N float elements) and the last complete frame of (complex-valued) samples is stored in another
buffer (with 2N float elements). Your ISR will simply accept new input samples and fill up the
incoming buffer; no processing other than incrementing a global index and checking for a full buffer
is performed in the ISR. When the incoming buffer is full, you should swap buffers (the “incoming”
buffer becomes the “complete” buffer, and vice versa) and begin estimating the frequency of the
signal captured in the complete buffer in your main code. Note that, in step 1, the FFT will
overwrite the current “complete” buffer. Your ISR will also be running while you perform the



frequency estimation steps and will be filling up the new incoming buffer. To run in real-time, you
need to complete all of your computations before the next incoming buffer is full. You do not need
to send any output signals to the AIC23 codec.

2.1 Step 1

Due to the wide variety of applications for the FFT, TI provides an optimized linear assembly
function to implement FFTs on the C6x. You will need three functions to use TI’s optimized FFT
routines. These functions are cfftr2 dit, digitrev index, and bitrev. You should read the
header comments in these files to make sure that you know how to use them correctly. Your FFT
function call should work like:

void cfftr2_dit( float *z, const float *w, short N)

// z Pointer to Array of Dimension 2*N elements holding

// Input to and Outputs from the function

// w Pointer to an array holding the complex twiddle factors

// N Number of complex points in z

The input to the FFT is in the array z and the result of the FFT is returned in the array z (the
input is overwritten by the FFT function). You should compute the sin/cos portions of the “twiddle
factors” during the initialization part of your code (prior to the FFT function call) and store them
in W . You will probably want to include the header file math.h to allow for pre-computation of
the sin and cos terms needed in for the complex “twiddle-factors”. All input/output arrays and
twiddle factors should be single-precision floating point datatypes.

You should confirm that this part of your code is working correctly before proceeding. One
way to do this is just provide some known input to the FFT function and compare the output to
Matlab.

2.2 Step 2

This step should be straightforward.

2.3 Step 3

This step should also be straightforward. Note that U [k] is a multimodal function, hence there is
no efficient way to find the maximum except by brute-force search. The key here is to find the
index of the maximum, i.e. to find k̂.

2.4 Step 4

You may need to do a little bit of research on quadratic interpolation to determine an efficient
algorithm for performing this step. You should be able to compute the quadratic polynomial coef-
ficients {a, b, c} using standard operations like addition, subtraction, multiplication, and division.
There should be no need for any fancy calculations here like a square root. You are strongly en-
couraged to test this function independently by picking your own {a, b, c} polynomial coefficients,
generating three input/output pairs {x1, y1}, {x2, y2}, {x3, y3}, passing these into your function,
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Figure 2: Suggested logical flow of your frequency estimation code code. The green box represents
the overall frequency estimation function and the yellow boxes represent the specific steps (which
you put into subfunctions for testing if you like).



and confirming that your function returns the same quadratic polynomial coefficients that you
chose.

2.5 Verification and Testing

Since part of this assignment is to explore the complexity trends of each step, you should use a
sampling frequency of 8 kHz to allow for testing at larger values of N . To test that your frequency
estimator is working correctly, you can use the following Matlab code to generate a 1 kHz complex
exponential signal with some moderate background noise:

fs = 44100; % sampling frequency

f = 1000; % frequency of tone

p = 2*pi*rand; % random phase of tone

s2 = 0.01; % variance of the additive noise

T = 5; % duration

t = [0:1/fs:T]’; % time vector

x = cos(2*pi*f*t+p)+sqrt(s2)*randn(size(t)); % real part

y = sin(2*pi*f*t+p)+sqrt(s2)*randn(size(t)); % imaginary part

m = max([x;y]);

x = 0.99*x/m; % normalize to avoid clipping

y = 0.99*y/m; % normalize to avoid clipping

sound([x y],fs);

Feel free to adjust these parameters to see how they affect the accuracy of your frequency estimator.
You should not increase the frequency of the tone much beyond 3 kHz since the anti-aliasing filter
on the DSK will block frequencies close to and above 4 kHz.

You may use the printf function to verify that your frequency estimates are accurate but please
remember that this will prevent real-time operation of your code. You should probably display the
non-normalized estimates since those will correspond to the actual frequency of the analog signal.
Do not use the printf function when profiling your code and when determining the largest possible
value of N that will run in real-time.

3 In Lab

You will work with the same lab partner as in the prior laboratory assignments. Please contact
the instructor if your lab partner has dropped the course or if you have concerns about your lab
partner’s performance on the prior assignment.

4 Code Submission and Specific Items to Discuss in Your Report

Your code will be tested for correct functionality and profiled by the grader for select values of N
to determine if the profiling results in your report are accurate. Please be sure to write structured
C code and to comment your code liberally to facilitate testing by the grader.

You should test your frequency estimator at different values of N to determine how the length
of the observation and the number of FFT points affect the accuracy of the frequency estimates.
Each frequency estimate will be a little different from the last — this is caused by the noise and is



to be expected. Nevertheless, you should be getting very accurate and closely repeatable frequency
estimates for even moderate values of N as long as you don’t add too much noise to the signal.

In addition to verifying the accuracy of your frequency estimator, you should profile each of
the four steps in your frequency estimator for increasing values of N , up to the point where the
code no longer runs in real time. Your double-buffer arrays might get very big, in which case you
should put your data in external memory since it will allow much larger arrays than the internal
memory. If the arrays get too big to store in external memory, you can increase the sampling rate
to reduce the available time for computation. How large can you make N before real-time operation
is no longer possible? What are the complexity trends of each step? You should be able to clearly
demonstrate the N log2(N) complexity trend of the FFT, but what about the other steps? What
is the complexity trend in computing the squared magnitudes (step 2)? What is the complexity
trend in the brute-force search for the maximum (step 3)? What is the complexity trend in the
quadratic interpolation step (step 4)? Can you explain your profiling results? You should plot your
profiling results to demonstrate the trends clearly and discuss what parts of the frequency estimator
actually set the limit on N for real-time operation. In other words, is there a particular step in the
frequency estimator that dominates the overall complexity at large N? Your plots should include
distinct line types and clearly labeled legends. You may want to try generating semilog or loglog
plots to see if that makes your results easier to interpret.


