
D. Richard Brown III	

Associate Professor	

Worcester Polytechnic Institute	

Electrical and Computer Engineering Department	

drb@ece.wpi.edu	

28-October-2010	

Interfacing a DSP With the Real World	

analog	

input	

ADC	

 DSP	

 DAC	

 analog	

output	

data	

 code	

TMS320C6713 DSK:	

digital inputs = 4 DIP switches	

digital outputs = 4 LEDs	

ADC and DAC = AIC23 codec	

digital	

inputs	

digital	

outputs	

DIP Switches and LEDs	

LED and DIP switch interface functions are provided in dsk6713bsl.lib.	

 Initialize the DSK with the BSL function DSK6713_init();	

 Initialize DIP/LEDs with���

	

DSK6713_DIP_init() and/or DSK6713_LED_init()	

 Read state of DIP switches with���

	

DSK6713_DIP_get(n) 	

 Change state of LEDs with���

	

DSK6713_LED_on(n) or���
	

DSK6713_LED_off(n) or���
	

DSK6713_LED_toggle(n) 	

where n=0, 1, 2, or 3.	

Documentation is available in c6713dsk.hlp (on course website).	

AIC23 Codec	

  AIC23 codec performs both ADC and DAC functions	

  Stereo input and output (left+right channels)	

  Initialization steps:	

  Initialize the DSK with the BSL function DSK6713_init();	

  Open the codec with the BSL function���

hCodec = DSK6713_AIC23_openCodec(0,&config);	

○  “hCodec” is the codec “handle”. You can think of this as a unique

address of the codec on the McBSP bus.	

○  “config” is the default configuration of the codec. See the header

file dsk6713_aic23.h and the AIC23 codec datasheet (link on the
course web page) for details.	

  Optional: Set the codec sampling frequency.	

  Configure the McBSP to transmit/receive 32 bits (two 16 bit

samples) with the CSL function McBSP_FSETS()	

  Set up and enable interrupts	

Codec Initialization Example (from Kehtarnavaz)	

Initialization steps:	

1.  Initialize the DSK	

2.  Open the codec with

the default
configuration.	

3.  Configure multi-
channel buffered serial
port (McBSP)	

  SPCR = serial port

control register	

  RCR = receive control

register	

  XCR = transmit control

register	

  See SPRU508e.pdf	

4.  Set the sampling rate	

5.  Configure and enable

interrupts	

6.  Do normal processing

(we just enter a loop
here)	

AIC23 Codec: Interrupts	

  We will use an interrupt interface between the DSP

and the codec.	

  DSP can do useful things while waiting for samples

to arrive from codec, e.g. check DIP switches	

  C6x interrupt basics:	

  Interrupt sources must be mapped to interrupt events	

○  16 physical “interrupt sources” (timers, serial ports, codec, …)	

○  12 logical “interrupt events” (INT4 to INT15)	

  Interrupt events have associated “interrupt vectors”. An
“interrupt vector” is a special pointer to the start of the
“interrupt service routine” (ISR).	

  Interrupt vectors must be set up in your code (usually in
the file “vectors.asm”).	

  You are also responsible for writing the ISR.	

Interrupts	

interrupt event N occurs	

(C compiler generates	

code to automatically	

save the state)	

main code	

physical interrupt source X	

linked to 	

logical interrupt event N	

interrupts enabled	

interrupt vector N	

branch to interrupt service routine	

interrupt service routine	

do something useful	

make sure the ISR completes	

before the next interrupt occurs	

return to main code	

Interrupt Vector	

•  We usually link the physical codec interrupt to INT15.	

•  The ISR in this example is called “serialPortRcvISR” (you
can rename it if you like).	

•  The interrupt vector is usually in the vectors.asm file:	

•  Each interrupt vector must be exactly 8 ASM instructions	

A Simple Interrupt Service Routine	

Remarks:	

•  MCBSP_read() requests L+R samples from the codec’s ADC	

•  MCBSP_write() sends L+R samples to the codec’s DAC	

•  This ISR simply reads in samples and then sends them back out.	

Setting the Codec Sampling Frequency	

Here we open the codec with the default configuration:	

The structure “config” is declared in dsk6713_aic23.h	

Rather than editing the default configuration in the header file, we can change
the sampling frequency after the initial configuration:	

Frequency definitions are in dsk6713_aic.h	

Other Codec Configuration	

  Line input volume level (individually controllable for left
and right channels)	

  Headphone output volume level (individually
controllable for left and right channels)	

  Digital word size (16, 20, 24, or 32 bit)	

  Other settings, e.g. byte order, etc. For more details,
see:	

  dsk6713_aic23.h	

  AIC23 codec datasheet (link on course web page)	

  C:\CCStudio_v3.1\docs\hlp\c6713dsk.hlp	

Codec Data Format and How To Separate
the Left/Right Channels	

// we can use the union construct in C to have !
// the same memory referenced by two different variables!
union {Uint32 combo; short channel[2];} temp;!

// the McBSP functions require that we !
// read/write data to/from the Uint32 variable!
temp.combo = MCBSP_read(DSK6713_AIC23_DATAHANDLE);!
MCBSP_write(DSK6713_AIC23_DATAHANDLE, temp.combo);!

// but if we want to access the left/right channels individually!
// we can do this through the short variables!
Leftchannel = temp.channel[1];!
Rightchannel = temp.channel[0];!

temp.channel[0] (short) temp.channel[1] (short) temp.combo (Uint32)

Final Remarks on DSP/Codec Interface	

  In most real-time DSP applications, you process
samples as they become available from the codec’s
ADC (sample-by-sample operation).	

  This means that all processing will be done in the ISR.	

  The ISR must run in real-time, i.e. the total execution

time must be less than one sampling period.	

  You can do DIP/LED processing outside of the ISR (in
your main code).	

  Look at Kehtarnavaz Lab 2 for examples.	

C6713 DSK Memory Architecture	

  TSM320C6713 DSP chip has 256kB internal SRAM	

  Up to 64kB of this SRAM can be configured as shared L2 cache	

  DSK provides additional 16MB external RAM (SDRAM)	

  DSK also provides 512kB external FLASH memory	

  Code location (.text in linker command file)	

  internal SRAM memory (fast)	

  external SDRAM memory (typically 2-4x slower, depends on cache

configuration)	

  Data location (.data in linker command file)	

  internal SRAM memory (fast)	

  external SDRAM memory (slower, depends on datatypes and cache

configuration)	

  Code+data for all projects assigned in ECE4703 should fit in

the C6713 internal SRAM 	

TMS320C6713 DSK Memory Map	

0000 0000	

FFFF FFFF	

0003 FFFF	

Internal SRAM (256kB)	

8000 0000	

8FFF FFFF	

External SDRAM (16MB)	

your code+data here	

FLASH	

8000 0000	

8007 FFFF	

Linker Command File Example	

MEMORY
{
 vecs: o = 00000000h l = 00000200h
 IRAM: o = 00000200h l = 0002FE00h
 CE0: o = 80000000h l = 01000000h
}

SECTIONS
{
 .vectors > vecs
 .cinit > IRAM
 .text > IRAM
 .stack > IRAM
 .bss > IRAM
 .const > IRAM
 .data > IRAM
 .far > IRAM
 .switch > IRAM
 .sysmem > IRAM
 .tables > IRAM
 .cio > IRAM
}

Addresses 00000000-0002FFFF correspond to the lowest
192kB of internal memory (SRAM) and are labeled “IRAM”.	

External memory is mapped to address range 80000000 –
80FFFFFF. This is 16MB and is labeled “CEO”.	

Both code and data are placed in the C6713 internal SRAM in
this example. Interrupt vectors are also in SRAM.	

Code goes here	

Data goes here	

vectors.asm	

  This file contains your interrupt vectors	

  “.sect” directive at top of file tells linker
where (in memory) to put the code	

  Each interrupt vector is composed of
exactly 8 assembly language instructions	

  Example: 	

Debugging and Other Useful Features
of the CCS IDE	

  Breakpoints	

 Watch variables	

  Plotting arrays of data	

 General Extension Language (GEL)	

Breakpoints	

  Breakpoints: stop code execution at this point to allow state
examination and step-by-step execution.	

break point

toggle
break point

clear all
break points

Breakpoints	

source step into
source step over

step out
ASM step into

ASM step over

run to cursor
set progam counter to cursor

“Run to Cursor” is a handy	

shortcut instead of setting	

a breakpoint	

Watch Variables	

Watch Variables	

  In the Watch Locals tab, the debugger
automatically displays the Name, Value, and Type
of the variables that are local to the currently
executing function.	

  In the Watch tab, the debugger displays the
Name, Value, and Type of the local and global
variables and expressions that you specify.	

 Can add/delete tabs.	

Plotting Arrays of Data	

Graph Windows: Plotting Arrays of Data	

right click

Profiling Your Code and Making it
More Efficient	

 How to estimate the execution time
of your code.	

 How to use the optimizing compiler
to produce more efficient code.	

 Other factors affecting the efficiency
of your code.	

How to estimate code execution time
when connected to the DSK	

1.  Start CCS with the C6713 DSK connected	

2.  Debug -> Connect (or alt+C)	

3.  Open project, build it, and load .out file to the DSK	

4.  Open the source file you wish to profile	

5.  Set two breakpoints for the start/end of the code range you wish to profile	

6.  Profile -> Clock -> Enable	

7.  Profile -> Clock -> View	

8.  Run to the first breakpoint	

9.  Reset the clock	

10.  Run to the second breakpoint	

11.  Clock will show raw number of execution cycles between breakpoints.	

Tip: You can save your breakpoints, graphs, and watch windows with	

File -> Workspace -> Save Workspace As	

Another method for estimating code
execution time (part 1 of 3)	

Repeat steps 1-4 previous method.	

5.  Clear any breakpoints in your

code	

6.  Profile -> Setup	

7.  Click on Custom tab	

8.  Select “Cycles”	

9.  Click on clock (enable profiling)	

Another method for estimating code
execution time (part 2 of 3)	

10.  Select Ranges tab	

11.  Highlight code you want to profile

and drag into ranges window (hint:
you can drag whole functions into
this window)	

12.  Repeat for other ranges if desired	

Another method for estimating code
execution time (part 3 of 3)	

13.  Profile -> Viewer	

14.  Run (let it run for a minute or more)	

15.  Halt	

16.  Observe profiling results in Profile Viewer window	

Hint: edit the columns to see averages or maximums	

What does it mean?	

 Access count is the number of times that

CCS profiled the function	

 Note that the function was probably called

more than 49 times. CCS only timed it 49
times.	

  Inclusive average is the average number of
cycles needed to run the function including
any calls to subroutines	

  Exclusive average is the average number of
cycles needed to run the function excluding
any calls to subroutines	

Optimizing Compiler	

Profiling results after compiler optimization	

  In this example, we get a 3x-4x improvement with
“Speed Most Critical” and “File (-o3)”
optimization	

  Optimization gains can be much larger, e.g. 20x	

Limitations of hardware profiling	

  Breakpoint/clock profiling method may not work
with compiler-optimized code	

  Profile -> View method is known to be somewhat
inaccurate when connected to real hardware (see
“profiling limitations” in CCS help)	

  Accuracy is better when only one or two ranges are

profiled	

  Best accuracy is achieved by running a “cycle accurate

simulator”	

Other factors affecting code efficiency	

  Memory	

  Code location (.text in linker command file)	

○  internal SRAM memory (fast)	

○  external SDRAM memory (typically 2-4x slower, depends on cache

configuration)	

  Data location (.data in linker command file)	

○  internal SRAM memory (fast)	

○  external SDRAM memory (slower, depends on datatypes and cache

configuration)	

  Data types	

  Slowest execution is double-precision floating point	

  Fastest execution is fixed point, e.g. short	

Final Remarks	

  You should have enough information to complete Lab 1	

  Refer to Lab 2 example code and discussions in Kehtarnavaz	

  Lecture notes	

  Reference material noted in lecture notes	

  Please make sure you understand what you are doing. Don’t just copy and
paste from Kehtarnavaz. Please ask questions if you are unsure.	

  Lab 1 Part 3: Signal Squaring	

  Simple example of non-linear signal processing	

  Sometimes used in synchronization algorithms	

  You want the analog input signal to use the full range of the ADC but avoid
clipping (clipping = very bad nonlinear distortion)	

  You also want to avoid clipping in the output	

  Careful analysis of the output will reveal certain “features” of the AIC 23	

