
ECE4703 B Term 2012 Laboratory Assignment 4

Signoff 2-5pm 28-Nov-2012 // Report due by 3pm 29-Nov-2012

The goals of this laboratory assignment are:

• to familiarize you with assembly language programming and code optimization on the
TMS320C6713,

• to allow you to experimentally try various coding strategies to best use the pipeline and
functional units available on the TMS320C6713,

• to reinforce your understanding of the profiling capabilities of CCS.

Problem Statement

There are often cases where C code is unable to achieve the required performance for a timing-
critical application. In these cases, assuming you have already done your best to optimize the
data types and the memory usage, you have a couple options. You could use the optimization
capabilities of the CCS C compiler to improve your code performance or you could optimize your
code by writing critical functions in hand-optimized assembly language. While writing your own
assembly code can be difficult for complicated algorithms, it is a reasonable approach for simple
algorithms. Writing assembly language code also allows you to directly control the operation of
the DSP and to get a much better feeling for the sensitivity of its performance to various factors
including pipeline efficiency and functional unit efficiency.

In this lab assignment, you will modify your DF-I FIR filter code written for Laboratory As-
signment 2 to improve its efficiency. Specifically, you will modify and functionalize your DF-I FIR
filter C code from Laboratory Assignment 2 to calculate the output of a Direct Form I FIR fil-
ter with arbitrary order and arbitrary double-precision floating point coefficients stored in
a global array. You will then also write a C-callable assembly language function to perform the
same function, hopefully performing the calculations with less cycles. You will also compare the
performance of this C-callable assembly function to the performance of your C function for a 49th
order FIR filter (50 coefficients).

Part 1: Double-Precision Floating-point DF-II IIR filter C function

In Laboratory Assignment 2, you wrote C code to realize a real-time floating point DF-I FIR filter.
In this assignment, you will modify and functionalize your DF-I FIR filter code from Lab 2 to use
double-precision floating point coefficients and intermediate values, and to allow for any
filter order. In part 1 of this assignment, you will create a new project (probably based closely on
a project from Laboratory Assignment 2) to realize a DF-I FIR filter with prototype

1

short firdp(double*,double*,short,short)

that you will call from your ISR. Your function should accept the following inputs:

• Pointer to start of the double-precision float coefficient array

• Pointer to the start of the double-precision float input buffer

• Index of the most recent input in the current input buffer (a number between zero and the
filter order)

• Filter order

By this point, your code should be “updating and index” and not “moving the contents of the
buffer”. Prior to calling your function, you should cast and scale the most recent input from the
codec as a double and store it in the input buffer, updating the buffer index as necessary. Your
function should then compute the output

y[n] =
N−1∑

i=0

b[i]x[n − i]

where N is the number of filter coefficients. Note that, since the function is required to return a
short, you are required to perform the final cast from double-precision float to short in your DF-I
FIR function.

Using your filter coefficients from Lab 2 (in double precision rather than single precision),
confirm that your filter is working correctly and that it satisfies all of the requirements stated
above. Profile your function for a 49th order FIR filter (there will be 50 coefficients total) with
and without various levels of optimization and note the inclusive maximum values in your report.
You will probably need to use the C6713 Cycle-Accurate Simulator for good results, especially
with optimization. These values establish a baseline by which you will compare your hand-coded
assembly language DF-I FIR filter function.

Part 2: Double-Precision Floating-point DF-I FIR filter ASM func-

tion

Modify your project from Part 1 by adding a C-callable assembly language function that has
the same prototype (with a different function name, of course) and performs the same task as
your C function. Do not use linear assembly or inline assembly language. Your function should be
written entirely in standard TMS320C6x assembly language and you are permitted to use any valid
commands and directives in the programming guide. Please comment your ASM code liberally,
both to aid debugging and to help the grader understand what you are doing.

Note that the inputs/output will be passed into/from your ASM function via registers as de-
scribed in your textbook and the lecture notes. Your code will need to load the feedforward and
feedback coefficients from memory, e.g. using LDW or LDDW commands, into appropriate registers.

As part of your assembly language programming, you are allowed to specify which instructions
are to be grouped into one execution packet via the parallel bars ||. You are also allowed to specify
which functional unit should execute each command (recall the 8 functional units available in the

TMS320C6713). You are encouraged to try various approaches to this problem to minimize the
number of execution packets and the number of clock cycles required to execute your function
function.

You can confirm that your ASM function is working correctly by calling both the C function
and the ASM function with the same inputs and confirming that they produce exactly the same
outputs. There should be no difference between these functions except execution speed.

Bonus points

To encourage you to put some time into ASM code optimization, bonus points will be available for
this assignment as follows:

• 10 bonus points will be given in this assignment to each team that writes a C-callable assembly
language function that executes in 90% or less of the cycles required by the unoptimized C
function. In other words, if your C function takes 1000 cycles to run, you will get the bonus
points if your ASM function runs in 900 or less cycles (and works correctly).

• 20 bonus points will be given in this assignment to each team that writes a C-callable assembly
language function that executes in less cycles than their fully-optimized C function.

• An additional 20 bonus points will be given to the team that successfully implements their
ASM function in the least number of cycles and meets all of the requirements of the assign-
ment.

All bonuses will be based on profiling results on the C and ASM functions for 50 coefficient FIR
filters as measured by the grader. Your C and ASM functions have to work correctly and have to
satisfy all of the requirements of the assignment to be eligible for bonus points.

In Lab

You will work with the same lab partner as in the prior laboratory assignments. Please contact
the instructor if your lab partner has dropped the course or if you have concerns about your lab
partner’s performance on the prior assignments.

Suggested Procedure for Software Design

1. Begin by familiarizing yourself with assembly language programming for the TMS320C6x.
There are many new instructions to learn and you should be sure to keep in mind the dif-
ferent functions for floating point operations versus integer/fixed-point operations. You will
probably need to refer to the TMS320C6000 Programmer’s Guide and/or Instruction Refer-
ence for the full details on certain instructions.

2. Get your C function working first. It will probably be very difficult to troubleshoot your
ASM function if you do not have the C function working first.

3. Don’t worry about parallelizing/optimizing your ASM code in the beginning. Just get your
ASM function working correctly. You can set breakpoints in your assembly code and also
view the contents of registers (via the “View” menu) to facilitate troubleshooting.

4. Once you have your assembly language function working and you’ve fully tested it, think
carefully about how to put instructions in parallel to maximize parallel processing (decrease
the number of execution packets per fetch packet). Can you reorder instructions to avoid
resource conflicts as well as avoid data and branch hazards? Can you perform useful tasks
rather than inserting NOPs?

To help with optimization, it is highly recommended that you draw some flowcharts and
dependency/pipeline diagrams in this step. These should be included in your report.

Specific Items to Discuss in Your Report

Your report should focus primarily on your approach to developing an efficient ASM function for
DF-I FIR filtering with double-precision math. There is a lot of room for analysis (pipeline usage,
functional unit usage, data hazards, ...) and discussion here. You should discuss the profiling
gains you were able to make with respect to the C function you wrote in Part 1 and use graphics
appropriately to make key points.

