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ECE503: Digital Filter Design

Lecture 9 Topics

Within the broad topic of digital filter design, we are going to focus on
the design of LTI IIR discrete-time filters from continuous-time filters.

continuous-time discrete-time

h̄(t)

H̄(s) H̄(Ω)

h[n]

H(ω) H(z)

1. Impulse invariance

2. Bilinear Transform

3. Specification of filter characteristics

4. Frequency transformation of lowpass IIR filters
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Motivation/Applications

Application 1: You are given an LTI continuous-time system (block
diagram, impulse response, transfer function, ...) and asked to design a
discrete-time system that emulates its behavior. How should you do this?

multiplier
voltage

controlled
oscillator

x(t) y(t)F̄ (s)

Application 2: You are given a set of discrete-time filter specifications, for
example “design a lowpass filter with less than one dB ripple in the
passband and at least 30 dB rejection in the stopband, where the passband
is |ω| < π/8 and the stopband is |ω| > π/4”, and asked to design a DT
filter to meet these specs. How should you do this? One approach:

1. Convert the DT filter specifications to CT filter specifications

2. Design a CT IIR filter to meet the specifications (using
long-established relatively simple methods for CT IIR filter design)

3. Transform the CT filter to a DT filter
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Why IIR Filters?

Chapter 10 of your textbook covers the design of DT FIR filters (we will
not be covering this). Our focus on DT IIR filter design is motivated by
the following facts:

1. All practical LTI CT systems are IIR.

2. To meet a given set of filter specifications, the order of an IIR filter
that meets the specifications is typically much lower than the order of
an FIR filter that meets the same specifications. Hence the
computational complexity of DT IIR filters is typically much less than
DT FIR filters that meet the same specifications.
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General Requirements for CT/DT Transformation

Requirement 1: Points on the imaginary axis in the s-domain must be
mapped to points on the unit circle in the z-domain.

Requirement 2: Stable causal CT transfer functions must be transformed
to stable causal DT transfer functions.

Recall that stable causal CT transfer functions have their poles in the
left-half plane.

s-domain z-domain
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Impulse Invariance

Given a causal LTI CT system impulse response h̄(t), we can write the DT
impulse response

h[n] = h̄(t)|t=nT = h̄(nT ) for n = 0, 1, . . .

Note: Your textbook defines impulse invariance slightly differently in
problem 9.6:

h[n] =

{

1
2 h̄(0

+) n = 0

h̄(nT ) n = 1, 2, . . .

The only difference is in h[0]. The boxed definition is more common.

Does this CT→DT transformation satisfy the general requirements?
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Impulse Invariance Example

Suppose you are given a causal LTI CT system with H̄(s) = 1
s−a . The

inverse Laplace transform gives h̄(t) = eatµ(t). Hence h[n] = eaTnµ[n] (or
h[n] = 1

2δ[n] + eaTnµ[n− 1] using your textbook’s definition).

What is H(z)? Rewrite

h[n] = eaTnµ[n] =
(

eaT
)n

µ[n] = αnµ[n]

Table lookup tells us

H(z) =
1

1− eaT z−1

with ROC |z| > eaT .

Remarks:
◮ Suppose a is on on the imaginary axis. What is the magnitude of the

pole of H(z)?
◮ Suppose a is complex with negative real part. What can you say

about the magnitude of the pole of H(z)?
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Impulse Invariance Example

% CT system

% H(s) = 1/(s-a)

a = -0.5;

tfinal = 20;

ctnum = 1;

ctden = [1 -a];

ctsys = tf(ctnum,ctden);

[y,t] = impulse(ctsys,tfinal);

plot(t,y,’r’)

% DT system

T = 0.5;

alpha = exp(a*T);

dtnum = [1 0];

dtden = [1 -alpha];

dtsys = tf(dtnum,dtden,T);

[dty,dtt] = impulse(dtsys,tfinal);

hold on

n=0:length(dtt)-1;

plot(dtt,alpha.^n,’b+’);

stem(dtt,dty);

hold off

xlabel(’time’);

ylabel(’impulse response’);

legend(’CT’,’h[n]’,’Matlab impulse response of H(z)’);
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Impulse invariance doesn’t imply invariance to all inputs

% step responses

% note these results are consistent with

% the final value theorems

[ys,ts] = step(ctsys,tfinal);

[dtys,dtts] = step(dtsys,tfinal);

figure(2)

plot(ts,ys,’r’)

hold on

stem(dtts,dtys);

hold off

xlabel(’time’);

ylabel(’step response’);

legend(’CT’,’Matlab step response of H(z)’);
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In general, you can pick a particular input and match the response of the
DT system to the response of the CT system for that input. But the
response to other inputs will be different.
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Extending the Previous Impulse Invariance Example

Now suppose you have a causal LTI CT system with transfer function

H̄(s) =

N
∑

k=1

bk
s− ak

where each ak is distinct (no repeated roots). Using linearity, we can write

h̄(t) =

(

N
∑

k=1

bke
akt

)

µ(t).

When we sample this at rate FT = 1

T
, we get the DT impulse response

h[n] =

(

N
∑

k=1

bke
akTn

)

µ[n] =

(

N
∑

k=1

bk(e
akT )n

)

µ[n]

which has z-transform

H(z) =

N
∑

k=1

bk
1− eakT z−1

with ROC extending outward from the largest magnitude pole.
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A Repeated Pole Example

Suppose you have a causal LTI CT system with transfer function

H̄(s) =
b1

s− a1
+

b2
(s− a1)2

.

From a Laplace transform table, we have for Re(s) > −α

tk−1

(k − 1)!
e−αtµ(t)←→

1

(s+ α)k

Hence, using linearity, we can write

h̄(t) = b1e
a1tµ(t) + b2te

a1tµ(t).

When we sample this at rate FT = 1

T
, we get the DT impulse response

h[n] = b1e
a1Tnµ[n] + (b2T )ne

a1Tnµ[n]

which has z-transform

H(z) =
b1

1− ea1T z−1
+

(b2T )e
a1T z−1

(1− ea1T z−1)2

with ROC |z| > |ea1T |.
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A Repeated Pole Example

% CT system

% H(s) = b1/(s-a1)+b2/(s-a1)^2

a1 = -0.5;

b1 = 1;

b2 = -2;

tfinal = 20;

ctnum = b1*[1 -a1]+[0 b2];

ctden = [1 -2*a1 a1^2];

ctsys = tf(ctnum,ctden);

[y,t] = impulse(ctsys,tfinal);

plot(t,y,’r’)

% DT system

T = 0.5;

alpha = exp(a*T);

dtnum = b1*[1 -alpha 0]+b2*T*alpha*[0 1 0];

dtden = [1 -2*alpha alpha^2];

dtsys = tf(dtnum,dtden,T);

[dty,dtt] = impulse(dtsys,tfinal);

hold on

n=0:length(dtt)-1;

plot(dtt,b1*alpha.^n+b2*T*n.*alpha.^n,’b+’);

stem(dtt,dty);

hold off

xlabel(’time’);

ylabel(’impulse response’);

legend(’CT’,’h[n]’,’Matlab impulse response of H(z)’);
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Impulse Invariance: Frequency Response

Recall that h[n] is related to h(t) through ideal sampling. What is the
relationship between H(ω) and H̄(Ω)?

We’ve covered the relationship between the CTFT and the DTFT a few times:

H(ω) =
1

T

∞
∑

k=−∞

H̄

(

ω − k2π

T

)

Remarks:

◮ If H̄(Ω) is bandlimited such that H̄(Ω) ≈ 0 for all Ω ≥ π

T
, then there will be

negligible overlap in the sum of shifted spectra and

H(ω) ≈
1

T
H̄
(ω

T

)

for |ω| ≤ π

Hence, the DT system designed via impulse invariance accurately emulates
the CT system’s frequency response (and can be scaled if desired).

◮ If H̄(Ω) is not bandlimited, e.g. H̄(Ω) is a notch filter, there will be aliasing
and the resulting DT system’s frequency response is not likely to be an
accurate emulation of the CT system’s frequency response.
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Impulse-Invariant Lowpass Butterworth Filter Design Ex.

1

|H(ω)|

ω

π

1− δ1

δ2

ωp ωs

We start with the desired specifications of the DT filter. For this example,
we will use ωp = 0.2π, ωs = 0.3π, 1− δ1 = 0.89125, and δ2 = 0.17783.

WPI D. Richard Brown III 26-March-2012 14 / 33



ECE503: Digital Filter Design

Impulse-Invariant Lowpass Butterworth Filter Design Ex.

We will use the Butterworth filter approach in this example. Some facts
about Butterworth CT lowpass filters (from Appendix A.2):

|H̄(Ω)|2 =
1

1 +
(

Ω
Ωc

)2N

where Ωc is the cutoff frequency (radians/second) and N is the filter order.

Note:
◮ |H̄(Ω = 0)|2 = 1.
◮ |H̄(Ω)|2 is monotonically decreasing in Ω.

We will use the following steps to design our DT filter:

1. Convert DT filter specs to CT filter specs.

2. Determine the required filter order N and CT cutoff frequency Ωc.

3. Determine H̄(s).

4. Determine H(z) via impulse invariance.
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Impulse-Invariant Lowpass Butterworth Filter Design Ex.

[⋆ ⋆ ⋆ details on board ⋆ ⋆ ⋆]

Main result from step 3:

H̄(s) =
0.12093

(s2 + 0.3640s+ 0.4945)(s2 + 0.9945s+ 0.4945)(s2 + 1.3585s+ 0.4945)

Main result from step 4:

H(z) =
0.2871− 0.4466z−1

1− 1.2971z−1 + 0.6949z−2

+
−2.1428 + 1.1455z−1

1− 1.0691z−1 + 0.3699z−2

+
1.8577− 0.6303z−1

1− 0.9972z−1 + 0.2570z−2
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Impulse-Invariant Lowpass Butterworth Filter Design Ex.
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Impulse Invariance: Final Remarks

1. Main idea is to preserve characteristics of the CT impulse response in
the DT impulse response, e.g. fast settling time, etc.

2. Frequency response of DT system is only a good replica of CT system
if the CT system is bandlimited (negligible aliasing).

3. Idea can be extended to other types of waveform invariance, e.g. step
invariance.

4. The impulse invariance technique maps poles from s = ak on the
s-plane to z = eakT on the z-plane.

5. It is tempting to say that z = esT , which is a one-to-one mapping,
hence s = ln(z)/T and

H(z) = H̄(s)|s=ln(z)/T .

This is incorrect in most cases, however.
6. The impulse response of a DT IIR filter is not directly useful for

implementation. We need a transfer function or a difference equation.
7. See Matlab function impinvar.
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Bilinear Transform

Idea: Given a causal stable LTI CT filter H̄(s), we simply substitute

s =
2

T

(

1− z−1

1 + z−1

)

to get H(z).

Remark: This substitution is based on converting H̄(s) to a differential equation,
performing trapezoidal numerical integration with step size T to get a difference
equation, and then converting the difference equation to a transfer function H(z).

One appeal of the bilinear transform is that we have a direct method to go from
H̄(s) to H(z) that always works without going through the time-domain.

Your textbook shows:

◮ This is a one-to-one mapping between points in the s-plane and z-plane.

◮ Points in the left-half (right-half) s-plane are mapped to points inside
(outside) the unit circle on the z-plane.

◮ There is no aliasing even if H̄(s) is not bandlimited.
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Bilinear Transform: Simple Example

Suppose you are given a causal LTI CT system with H̄(s) = 1
s−a . We can

compute H(z) straightforwardly with a little algebra:

H(z) = H̄(s)|
s= 2

T

(

1−z−1

1+z−1

)

=
1

2
T

(

1−z−1

1+z−1

)

− a

=
T (1 + z−1)

2(1 − z−1)− aT (1 + z−1)

=
T (1 + z−1)

(2− aT )− (2 + aT )z−1

=
β(1 + z−1)

1− αz−1

This is quite different than the H(z) we computed via impulse invariance.
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Comparing Impulse Invariant and Bilinear Transform

H̄(s) = 1
s−a with a = −1

2 and sampling frequency FT = 2.
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Note the impulse invariant magnitude response is not scaled to match the
CTFT. Even if it were, it should be clear there is some aliasing here.
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Bilinear Transform: Frequency Response

Given a causal stable LTI CT filter H̄(s), we can compute H(z) with via
the bilinear transform. What is the relationship between H̄(Ω) and H(ω)?

Recall that H̄(Ω) = H̄(s)|s=jΩ and H(ω) = H(z)|z=ejω . Substituting
these into the bilinear transform formula, we get

jΩ =
2

T

(

1− e−jω

1 + e−jω

)

=
2

T

(

ejω/2 − e−jω/2

ejω/2 + e−jω/2

)

=
2j

T

(

1
2j (e

jω/2 − e−jω/2)
1
2 (e

jω/2 + e−jω/2)

)

=
2j

T
tan(ω/2)

Hence Ω = 2
T tan(ω/2) or ω = 2 tan−1(ΩT/2).
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Bilinear Transform: Frequency Warping
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Bilinear Transform: Consequences of Frequency Warping

The good news is that we don’t have to worry about aliasing. The bad
news is that we have to account for frequency warping when we start from
a discrete-time filter specification.

Procedure:

1. Convert the DT filter specifications to CT filter specifications
including prewarping the band edge frequencies

2. Design a CT IIR filter to meet the specifications

3. Transform the CT filter to a DT filter via the bilinear transform
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Bilinear Transform Lowpass Butterworth Filter Design Ex.

As before, we start with the desired specifications of the DT filter. We will
use the same parameters as last time: ωp = 0.2π, ωs = 0.3π,
1− δ1 = 0.89125, and δ2 = 0.17783.

Steps:

1. Convert DT filter specs to CT filter specs (including pre-warping
frequencies).

2. Determine the required filter order N and CT cutoff frequency Ωc.

3. Determine H̄(s).

4. Determine H(z) via impulse invariance.
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Impulse-Invariant Lowpass Butterworth Filter Design Ex.

[⋆ ⋆ ⋆ details on board ⋆ ⋆ ⋆]

Main result from step 3:

H̄(s) =
0.20238

(s2 + 0.3966s+ 0.5871)(s2 + 1.0836s+ 0.5871)(s2 + 1.4802s+ 0.5871)

Main result from step 4:

H(z) =
0.0007378(1 + z

−1)6

(1−1.2686z−1+0.7051z−2)(1−1.0106z−1+0.3583z−2)(1−0.9044z−1+0.2155z−2)
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Bilinear Transform Lowpass Butterworth Filter Design Ex.
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Bilinear Transform Lowpass Butterworth Filter Design Ex.
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General Filter Design Procedure

The bilinear transform lowpass filter design procedure is straightforward:

design CT

lowpass !lter bilinear transform

prewarp

DT frequency

speci!cations

to CT

H(z)

discrete-time

!lter speci!cations

If you want a different type of filter, e.g. bandpass, there are two options:

design prototype

CT lowpass !lter

convert CT

prototype

lowpass !lter to 

desired !lter type

(Appendix B)

bilinear transform

bilinear transform

to get prototype

DT lowpass !lter

convert DT prototype

lowpass !lter to desired

!lter type via

spectral transformation

(table 9.1)

prewarp

DT frequency

speci!cations

to CT

convert CT

frequency specs

to a prototype

CT lowpass

!lter (Appendix B)

H(z)

H(z)

discrete-time

!lter speci!cations
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Bilinear Transform Bandpass Butterworth Filter Design Ex.

Specifications: ωp1 = 0.45π, ωp1 = 0.65π, ωp1 = 0.3π, ωp1 = 0.75π,
passband ripple less than 1 dB, minimum stopband attenuation 40 dB.
% This code follows example 9.4

% set sampling period

T = 1;

% prewarp frequencies

omega = [0.3 0.45 0.65 0.75]*pi;

Omega_prewarped = (2/T)*tan(omega/2);

% convert CT frequency specs to a prototype CT lowpass filter

% we want the two stopband frequencies to be GEOMETRICALLY symmetric

% around the GEOMETRIC center frequency of the passband

Omega_0 = sqrt(Omega_prewarped(2)*Omega_prewarped(3));

BW = Omega_prewarped(3)-Omega_prewarped(2);

% adjust lower stopband edge so that product of stopband edge frequencies

% matches Omega_0^2

Omega_prewarped(1) = Omega_0^2/Omega_prewarped(4);

% create prototype CT LPF filter specs (see Appendix B)

Omega_p = 1;

Omega_s = (Omega_0^2-Omega_prewarped(1)^2)/(Omega_prewarped(1)*BW);

% design prototype CT LPF (can also do this as shown in on board)

[N,Wn] = buttord(Omega_p,Omega_s,1,40,’s’);

[B,A] = butter(N,Wn,’s’);

[BT,AT] = lp2bp(B,A,Omega_0,BW);

[num,den] = bilinear(BT,AT,T);
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Bilinear Transform Lowpass Butterworth Filter Design Ex.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−50

−40

−30

−20

−10

0

10

normalized frequency (times π)

m
ag

ni
tu

de
 r

es
po

ns
e

WPI D. Richard Brown III 26-March-2012 31 / 33



ECE503: Digital Filter Design

Bilinear Transform: Final Remarks

1. The bilinear transform only attempts to emulate the magnitude
response of the CT filter. The phase response of a DT filter derived
via the bilinear transform may be totally different than the CT filter.

2. See section 9.2.2 for several low-order filter examples.

3. See Matlab function bilinear.

4. The spectral transformations in Table 9.1 are also handled
conveniently with Matlab functions iirlp2lp, iirlp2hp, iirlp2bp,
and iirlp2bs.

5. Other CT filter design methods can also be used, e.g. Chebychev,
elliptic, ...
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Conclusions

1. This concludes our coverage of Chapter 9. Our focus was on
Sections 9.1-9.6, plus some additional material on impulse invariance.
We also referred to material in Appendices A-B of your textbook.

2. We are skipping Chapter 10, but it may be of interest to you if you
want to know how to design good FIR digital filters. The techniques
in Chapter 10 are not based on analog filter design.

3. Please read FFT basics (Section 11.3) and Number Representation
(Section 11.8) before the next lecture.

4. The next lecture is on Monday 02-April-2012 at 6pm.

5. The bonus midterm exam (60 points, 60 minutes, based on
fundamental material from Chapters 1-7) will begin at 7:30pm on
Monday 02-April-2012.
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