1. 3 points. Mitra 6.9.

Solution:

\[v[n] = \alpha |n| = \alpha^n \mu(n) + \alpha^{-n} \mu(-n-1). \]

Now, \(Z\{\alpha^n \mu(n)\} = \frac{1}{1 - \alpha^{-1}} \), \(|z| > |\alpha| \). (See Table 6.1)

\[Z\{\alpha^{-n} \mu(-n-1)\} = \sum_{n=-\infty}^{\infty} \alpha^{-n} z^{-n} = \sum_{m=1}^{\infty} \alpha^{-n} z^{-m} = \sum_{m=0}^{\infty} \alpha^{-m} z^{-m} - 1 = \frac{1}{1 - \alpha} - 1 \]

\[= \frac{\alpha}{1 - \alpha}, \quad |\alpha| < 1. \]

Therefore, \(Z\{v[n]\} = V(z) = \frac{1}{1 - \alpha z^{-1}} + \frac{\alpha}{z^{-1} - \alpha} = \frac{(1 - \alpha^2)z^{-1}}{(1 - \alpha z^{-1})(z^{-1} - \alpha)} \)

with its ROC given by \(|\alpha| < |z| < 1/|\alpha| \).

2. 4 points. Mitra 6.27.

Solution to part (a):

\[X_a(z) = \frac{7}{1 + 0.3z^{-1} - 0.1z^{-2}} = \frac{\rho_1}{1 + 0.5z^{-1}} + \frac{\rho_2}{1 - 0.2z^{-1}}, \]

where \(\rho_1 = \begin{vmatrix} 7 \\ 1 - 0.2z^{-1} \end{vmatrix}_{z=0.5} = 5, \quad \rho_2 = \begin{vmatrix} 7 \\ 1 + 0.5z^{-1} \end{vmatrix}_{z=0.2} = 2. \)

Therefore, \(X_a(z) = \frac{5}{1 + 0.5z^{-1}} + \frac{2}{1 - 0.2z^{-1}}. \)

There are three ROCs - \(R_1 : |z| < 0.2, \quad R_2 : 0.2 < |z| < 0.5, \quad R_3 : |z| > 0.5. \)

The inverse \(z \)-transform associated with the ROC \(R_1 \) is a left-sided sequence:

\(Z^{-1}\{X_a(z)\} = x_a[n] = (5(-0.5)^n + 2(0.2)^n)\mu[-n-1]. \)

The inverse \(z \)-transform associated with the ROC \(R_2 \) is a two-sided sequence:

\(Z^{-1}\{X_a(z)\} = x_a[n] = 5(-0.5)^n \mu[-n-1] + 2(0.2)^n \mu[n]. \)

The inverse \(z \)-transform associated with the ROC \(R_3 \) is a right-sided sequence:

\(Z^{-1}\{X_a(z)\} = x_a[n] = (5(-0.5)^n + 2(0.2)^n)\mu[n]. \)
Solution to part (b):

\[X_b(z) = \frac{3z^2 + 1.8z + 1.28}{(z - 0.5)(z + 0.4)^2} = \frac{3z^{-1} + 1.8z^{-2} + 1.28z^{-3}}{(1 - 0.5z^{-1})(1 + 0.4z^{-1})^2} \]

\[= K + \frac{\rho_1}{1 - 0.5z^{-1}} + \frac{\rho_2}{1 + 0.4z^{-1}} + \frac{\rho_3}{(1 + 0.4z^{-1})^2} \]

\[K = X_b(0) = \frac{1.28}{-0.5 \times (0.4)^2} = -16, \]

\[\rho_1 = \frac{3z^{-1} + 1.8z^{-2} + 1.28z^{-3}}{(1 + 0.4z^{-1})^2} \bigg|_{z=0.5} = 7.2346, \]

\[\rho_3 = \frac{3z^{-1} + 1.8z^{-2} + 1.28z^{-3}}{(1 - 0.5z^{-1})} \bigg|_{z=-0.4} = -7.2222, \]

\[\rho_2 = \frac{1}{-0.4} \left(\frac{3z^{-1} + 1.8z^{-2} + 1.28z^{-3}}{(1 - 0.5z^{-1})} \right) \bigg|_{z=-0.4} = -15.9877. \]

Hence,

\[X_b(z) = -16 + \frac{7.2346}{1 - 0.5z^{-1}} + \frac{7.2222}{1 + 0.4z^{-1}} + \frac{15.9877}{(1 + 0.4z^{-1})^2}. \]

There are three ROCs - \(R_1 : |z| < 0.4, \) \(R_2 : 0.4 < |z| < 0.5, \) \(R_3 : |z| > 0.5. \)

The inverse \(z \)-transform associated with the ROC \(R_1 \) is a left-sided sequence:

\[Z^{-1}\{X_b(z)\} = x_b[n] = -16\delta[n] + 7.2346(0.5)^n \mu[n-1] - 7.2222(-0.4)^n \mu[-n-1] + 15.9877(n+1)(-0.4)^n \mu[-n-1]. \]

The inverse \(z \)-transform associated with the ROC \(R_2 \) is a two-sided sequence:

\[Z^{-1}\{X_b(z)\} = x_b[n] = -16\delta[n] + 7.2346(0.5)^n \mu[n] - 7.2222(-0.4)^n \mu[-n-1] + 15.9877(n+1)(-0.4)^n \mu[-n-1]. \]

The inverse \(z \)-transform associated with the ROC \(R_3 \) is a right-sided sequence:

\[Z^{-1}\{X_b(z)\} = x_b[n] = -16\delta[n] + 7.2346(0.5)^n \mu[n] - 7.2222(-0.4)^n \mu[n] + 15.9877(n+1)(-0.4)^n \mu[n]. \]

3. 4 points. Mitra 6.42.

Solution:

\[H(z) = H_1(z)H_3(z) + (1 + H_1(z))H_2(z) \]

\[= 11.06 + 8.51z^{-1} + 5.28z^{-2} + 5.12z^{-3} + 1.19z^{-4}. \]
4. 4 points. Mitra 6.44.

Solution to part (a):

(a) A partial-fraction expansion of $H(z)$ in z^{-1} using the M-file \texttt{residue} yields

$$H(z) = -5 + \frac{4.0909}{1+0.4z^{-1}} + \frac{0.9091}{1-0.15z^{-1}}.$$

Hence, from Table 6.1 we have

$$h[n] = -5\delta[n] + 4.0909(-0.4)^{n}\mu[n] + 0.9091(0.15)^{n}\mu[n].$$

Solution to part (b):

(b) $x[n] = 2.1(0.4)^{n}\mu[n] + 0.3(-0.3)^{n}\mu[n]$. Its z–transform is thus given by

$$X(z) = \frac{2.1}{1-0.4z^{-1}} + \frac{0.3}{1+0.3z^{-1}} = \frac{2.4+0.51z^{-1}}{(1-0.4z^{-1})(1+0.3z^{-1})}, |z|>0.4.$$

The z–transform of the output $y[n]$ is then given by

$$Y(z) = H(z)X(z) = \left[\frac{2.4+0.51z^{-1}}{(1-0.4z^{-1})(1+0.3z^{-1})} \right] \left[\frac{-1.5z^{-1} + 0.3z^{-2}}{1+0.25z^{-1}-0.06z^{-2}} \right].$$

A partial-fraction expansion of $Y(z)$ in z^{-1} using the M-file \texttt{residue} yields

$$Y(z) = \frac{9.2045}{1+0.4z^{-1}} - \frac{3.15}{1-0.4z^{-1}} - \frac{5}{1+0.3z^{-1}} - \frac{1.0545}{1-0.15z^{-1}}, |z|>0.4.$$

Hence, from Table 6.1 we have $y[n] = \left(9.2045(-0.4)^{n}-3.15(0.4)^{n}-5(-0.3)^{n}-1.0545(0.15)^{n}\right)\mu[n].$

5. 3 points. Mitra 6.48 (a).

Solution to part (a):

Let the output of the predictor of Figure P6.4(a) be denoted by $E(z)$. Then analysis of this structure yields $E(z) = P(z)[U(z) + E(z)]$ and $U(z) = X(z) - E(z)$. From the first equation we have $E(z) = \frac{P(z)}{1-P(z)} U(z)$ which when substituted in the second equation yields

$$H(z) = \frac{U(z)}{X(z)} = 1 - P(z).$$

Analyzing Figure P6.3(b) we get $Y(z) = V(z) + P(z)Y(z)$ which leads to

$$G(z) = \frac{Y(z)}{V(z)} = \frac{1}{1-P(z)},$$

which is seen to be the inverse of $H(z)$.

Hence, for $P(z) = h_1z^{-1}$, we have $H(z) = 1 - h_1z^{-1}$ and $G(z) = \frac{1}{1-h_1z^{-1}}$.
6. 3 points. Mitra 6.73

Solution:

(a) \(Y(z) = X(z) + \alpha X(z)z^{-M} \), therefore, \(H(z) = \frac{Y(z)}{X(z)} = 1 + \alpha z^{-M} \) and \(h[n] = \delta[n] + \alpha \delta[n-M] \).

(b) \(G(z) = \frac{1}{H(z)} = \frac{1}{1 + \alpha z^{-M}} = \sum_{k=0}^{\infty} (-1)^k \alpha^k z^{-kM} \) by long division. Therefore, \(g[n] = \sum_{k=0}^{\infty} (-\alpha)^k \delta[n-kM] \).

(c) The ROC of the causal \(g[n] \) is \(|z| > |(-\alpha)^{1/M}| \). As long as \(|(-\alpha)^{1/M}| < 1\), the ROC will contain the unit circle and the inverse system will be stable.

7. 4 points. Mitra 6.83

Solution: Since \(x[n] = \alpha^n \mu[n] \), we know from a simple table lookup that \(X(z) = \frac{1}{1-\alpha z^{-1}} \) with ROC \(|z| > |\alpha| \). We now let

\[
X[k] = X(z)|_{z = ze^{j2\pi k/N}} = \frac{1}{1 - \alpha e^{-j2\pi k/N}}
\]

Even though the notation looks like the DFT here, this isn’t the DFT of \(\{x[n]\} \) because \(\{x[n]\} \) is an infinite length sequence and the DFT is only used on finite-length sequences.

Now we save that result for a bit and form a periodic extension of \(\{x[n]\} \) as follows

\[
\tilde{x}[n] = \sum_{\ell=-\infty}^{\infty} x[n + \ell N]
\]

\[
= \sum_{\ell=-\infty}^{\infty} \alpha^{n+\ell N} \mu[n + \ell N]
\]

Let \(n = mN + p \) with \(m \in \mathbb{Z} \) and \(p = 0, 1, \ldots, N - 1 \). Then we can write

\[
\tilde{x}[mN + p] = \sum_{\ell=-\infty}^{\infty} \alpha^{mN+p+\ell N} \mu[mN + p + \ell N]
\]

\[
= \alpha^{mN+p} \sum_{\ell=-m}^{\infty} \alpha^{\ell N}
\]

\[
= \alpha^{mN+p} \frac{\alpha^{-mN}}{1 - \alpha^N}
\]

\[
= \frac{\alpha^p}{1 - \alpha^N}
\]

for \(n = mN + p \) and \(p = 0, 1, \ldots, N - 1 \). If you plot this, you will see a periodic sawtooth type of waveform. Now we take the DFT of one period of \(\tilde{x}[n] \). We can set \(m = 0 \) so that
\[\tilde{x}[n] = \tilde{x}[p] \text{ for } n = 0, \ldots, N - 1 \text{ and write} \]

\[\tilde{X}[k] = \sum_{p=0}^{N-1} \tilde{x}[p] e^{-j2\pi kp/N} \]

\[= \frac{1}{1 - \alpha^N} \sum_{p=0}^{N-1} \alpha^p e^{-j2\pi kp/N} \]

\[= \frac{1}{1 - \alpha^N} \sum_{p=0}^{N-1} \beta^p \]

\[= \frac{1}{1 - \alpha^N} \sum_{p=0}^{N-1} \beta^p \]

\[= \frac{1}{1 - \alpha^N} \frac{1 - \beta^N}{1 - \beta} \]

\[= \frac{1}{1 - \alpha^N} \frac{1 - \alpha^N e^{-j2\pi k}}{1 - \alpha e^{-j2\pi k/N}} \]

\[= \frac{1}{1 - \alpha e^{-j2\pi k/N}} \]

\[= X[k] \]

since \(e^{-j2\pi k} = 1 \) for all integer \(k \). So this problem establishes an interesting relationship between the z-transform of an infinite length sequence sampled at specific values of \(z \) on the unit circle (corresponding to the DFT frequencies) and the actual DFT of one period of the periodically-extended sequence.