Digital Signal Processing
Complete Bandpass Filter Design Example

D. Richard Brown III
General Filter Design Procedure

1. Discrete-time filter specifications
2. Prewarp DT frequency specifications to CT
3. Convert CT frequency specs to a prototype CT lowpass filter
4. Design prototype CT lowpass filter
5. Convert CT prototype lowpass filter to desired filter type
6. Bilinear transform
7. Convert DT prototype lowpass filter to desired filter type via spectral transformation
8. H(z)
9. H(z)
Bilinear Transform Bandpass Filter Design Ex.

Desired discrete-time BPF specifications: \(\omega_{p1} = 0.45\pi, \omega_{p2} = 0.65\pi, \omega_{s1} = 0.3\pi, \omega_{s2} = 0.75\pi \), maximum passband ripple 1 dB, minimum stopband attenuation 40 dB.
Step 1: Prewarp to CT Frequencies

We can assume an arbitrary sampling period T_d, so we will choose $T_d = 1$. The following MATLAB code computes the prewarped CT frequencies:

```matlab
% set sampling period
T = 1;

% prewarp frequencies
omega = [0.3 0.45 0.65 0.75]*pi;
Omega_prewarped = (2/T)*tan(omega/2);
```

We get

```
Omega_prewarped =

1.0191  1.7082  3.2637  4.8284
```

and note that $\hat{\Omega}_p_1 \hat{\Omega}_p_2 = 5.5749 > 4.9204 = \hat{\Omega}_s_1 \hat{\Omega}_s_2$. We need to adjust one or more band edges so that $\hat{\Omega}_p_1 \hat{\Omega}_p_2 = \hat{\Omega}_s_1 \hat{\Omega}_s_2$.
Step 2: Precompute Values for Prototype CT LPF

Since we need $\hat{\Omega}_0^2 = \hat{\Omega}_p \hat{\Omega}_p = \hat{\Omega}_s \hat{\Omega}_s$, we can increase $\hat{\Omega}_s$ to shorten the left transition band.

The following MATLAB code makes this correction and also computes a convenient “bandwidth” variable.

```matlab
% we want the two stopband frequencies to be GEOMETRICALLY symmetric
% around the GEOMETRIC center frequency of the passband
Omega_0 = sqrt(Omega_prewarped(2)*Omega_prewarped(3));
Omega_prewarped(1) = Omega_0^2/Omega_prewarped(4);

% compute useful bandwidth variable for later
BW = Omega_prewarped(3)-Omega_prewarped(2);
```
Step 3: Design Prototype CT LPF

We now use the frequency relation between the prototype LPF and the transformed BPF

\[\Omega = -\Omega_p \frac{\hat{\Omega}_0^2 - \hat{\Omega}^2}{\hat{\Omega} (\hat{\Omega}_p2 - \hat{\Omega}_p1)} \]

to reverse transform the (prewarped and corrected) CT BPF specifications to an appropriate set of prototype CT LPF specifications. This can be accomplished in MATLAB as

```matlab
% create prototype CT LPF filter specs via LPF<->BPF transformation
% (uses even symmetry of magnitude response)
Omega_p = 1; % arbitrary
Omega_s = (Omega_0^2-Omega_prewarped(1)^2)/(Omega_prewarped(1)*BW);

% design prototype CT LPF
% (can also do this by hand as shown in another screencast)
[N,Wn] = buttord(Omega_p,Omega_s,1,40,’s’);
[B,A] = butter(N,Wn,’s’);
```

At this point, we have a transfer function \(H_p(s) \) for a prototype CT LPF.
Step 4: Transform from CT LPF to CT BPF

We have our prototype $H_P(s)$. To get $H_T(s)$ we have to apply the substitution

$$s \rightarrow \Omega_p \frac{s^2 + \hat{\Omega}_0^2}{s \left(\hat{\Omega}_p - \hat{\Omega}_p \right)}$$

For notational convenience, let $B = \hat{\Omega}_p - \hat{\Omega}_p$. This transform causes

$$H_P(s) = \frac{b}{\prod_{i=1}^{N} \left(1 - \frac{s}{\alpha_i} \right)} \rightarrow \frac{b}{\prod_{i=1}^{N} \left(1 - \frac{\Omega_p s^2 + \hat{\Omega}_0^2}{\alpha_i} \right)} = \frac{bB^N s^N}{\prod_{i=1}^{N} \left(Bs - \frac{\Omega_p s^2 + \hat{\Omega}_0^2}{\alpha_i} \right)}$$

Remarks:

- For each pole α_i of the prototype LPF, we now get two poles according to the solutions of

 $$Bs - \frac{\Omega_p s^2 + \hat{\Omega}_0^2}{\alpha_i} = 0$$

- Note the addition of N zeros at $s = 0$
Step 4: Transform from CT LPF to CT BPF (MATLAB)

Here we do the transformation manually (see also MATLAB function lp2bp)

```matlab
% compute poles of prototype CT LPF
LPFpoles = roots(A);

% compute new pole locations after transformation
BPFpoles = zeros(1,2*N);
index = 1;
for i=1:N,
    tmp = roots([1 -LPFpoles(i)*BW/Omega_p +Omega_0^2]);
    BPFpoles(index) = tmp(1);
    BPFpoles(index+1) = tmp(2);
    index = index+2;
end

% form numerator and denominator polynomial vectors
A_BPF = poly(BPFpoles);
B_BPF = [B(end)*BW^N zeros(1,N)];
```
Step 5: Bilinear Transform from CT BPF to DT BPF

The last step is to take $H_{BPF}(s)$ and perform the substitution

$$s \rightarrow \frac{2}{T_d} \left(\frac{1 - z^{-1}}{1 + z^{-1}} \right)$$

using $T_d = 1$ as decided earlier. MATLAB has a built-in command to do this called bilinear. All we need to do is

```matlab
[num,den] = bilinear(B_BPF,A_BPF,T);
```

to get the final discrete-time bandpass filter.
Bilinear Transform Lowpass Butterworth Filter Design Ex.