
DSP: Linear Convolution with the DFT

Digital Signal Processing
Linear Convolution with the Discrete Fourier Transform

D. Richard Brown III

D. Richard Brown III 1 / 7



DSP: Linear Convolution with the DFT

Linear and Circular Convolution Properties

Recall the (linear) convolution property

x3[n] = x1[n] ∗ x2[n] ↔ X3(e
jω) = X1(e

jω)X2(e
jω) ∀ω ∈ R

if the necessary DTFTs exist. If x1[n] is length N1 and x2[n] is length N2,
then x3[n] will be length N3 = N1 +N2 − 1. See Matlab function conv.

For the DFT, we have the circular convolution property

x3[n] = x1[n] N x2[n] ↔ X3[k] = X1[k]X2[k] ∀k = 0, . . . , N − 1

where

x1[n] N x2[n] =

N−1∑
k=0

x1[k]x2[((n− k))N ] =

N−1∑
k=0

x1[((n− k))N ]x2[k].

Note that x1[n] and x2[n] must have the same length N = N1 = N2 and
the result x3[n] will also be length N . See Matlab function cconv.

D. Richard Brown III 2 / 7



DSP: Linear Convolution with the DFT

Linear Convolution with the DFT?

Suppose we want to compute

x3[n] = x1[n] ∗ x2[n].

We could compute the DTFTs of x1[n] and x2[n], take their product, and
then compute the inverse DTFT to get x3[n], i.e.,

x3[n] = IDTFT(DTFT(x1[n]) · DTFT(x2[n]))

What if we want to use the DFT to compute the linear convolution
instead? We know

x3[n] = IDFT(DFT(x1[n]) · DFT(x2[n]))

will not work because this performs circular convolution.

D. Richard Brown III 3 / 7



DSP: Linear Convolution with the DFT

Avoiding Time-Domain Aliasing

Recall our notation WM = e−j2π/M . We have seen previously that the
M -point DFT of a finite-length sequence xi[n] with length Ni

Xi[k] =

Ni−1∑
n=0

xi[n]W
kn
M k = 0, 1, . . . ,M − 1

must satisfy M ≥ Ni to avoid time-domain aliasing when computing
IDFTM (DFTM (xi[n])).

If x3[n] = x1[n] ∗ x2[n] with x1[n] and x2[n] both finite length sequences,
then the longest sequence is x3[n] with length N3 = N1 +N2 − 1.

This implies that our DFTs X1[k], X2[k], and X3[k] should all be of
length M ≥ N1 +N2 − 1 to avoid time-domain aliasing. In other words,

x3[n] = IDFTM (DFTM (x1[n]) · DFTM (x2[n]))

will result in x3[n] = x1[n] ∗ x2[n] if M ≥ N1 +N2 − 1.
D. Richard Brown III 4 / 7



DSP: Linear Convolution with the DFT

Example

Suppose x1 = [1, 2, 3] and x2 = [1, 1, 1]. We can compute the linear
convolution as

x3[n] = x1[n] ∗ x2[n] = [1, 3, 6, 5, 3].

If we instead compute

x3[n] = IDFTM (DFTM (x1[n]) · DFTM (x2[n]))

we get

x3[n] =


[6, 6, 6] M = 3

[4, 3, 6, 5] M = 4

[1, 3, 6, 5, 3] M = 5

[1, 3, 6, 5, 3, 0] M = 6

Observe that time-domain aliasing of x3[n] is avoided for M ≥ 5.

D. Richard Brown III 5 / 7



DSP: Linear Convolution with the DFT

Example (continued)

0 1 2 3 4 5
0

5

10

n

x
3
[n

]

M=3

0 1 2 3 4 5
0

5

10

n

x
3
[n

]

M=4

0 1 2 3 4 5
0

5

10

n

x
3
[n

]

M=5

0 1 2 3 4 5
0

5

10

n

x
3
[n

]

M=6

D. Richard Brown III 6 / 7



DSP: Linear Convolution with the DFT

Linear Convolution with the DFT

zero-pad

zero-pad

M-point
DFT

M-point
DFT

M-point
IDFT

trim

length N1
sequence x1[k]

length N2 
sequence x2[k]

length N1+N2-1 
sequence x3[k]

Remarks:

I Zero-padding avoids time-domain aliasing and make the circular
convolution behave like linear convolution.

I M should be selected such that M ≥ N1 +N2 − 1.

I In practice, the DFTs are computed with the FFT.

I The amount of computation with this method can be less than
directly performing linear convolution (especially for long sequences).

I Since the FFT is most efficient for sequences of length 2m with
integer m, M is usually chosen so that M = 2m ≥ N1 +N2 − 1.

D. Richard Brown III 7 / 7


