
DSP: Fast FIR Filtering with the FFT

Digital Signal Processing
Fast FIR Filtering with the Fast Fourier Transform

D. Richard Brown III

D. Richard Brown III 1 / 8



DSP: Fast FIR Filtering with the FFT

FIR Filtering Complexity Analysis

Suppose you have a causal FIR filter with length-N impulse response h[n].
At each time n, we can compute the output of the filter (direct form) as

y[n] =

N−1∑
k=0

h[k]x[n− k]

which requires N multiplications and N − 1 accumulates at each time n.

Suppose we have a length-N input signal so that y[n] is length 2N − 1.
The total number of MACs to compute y[n] is O(N2).

We also know that we could compute

y[n] = IFFT2N−1(FFT2N−1(h[n]) · FFT2N−1(x[n]))

where the FFT and IFFT require O(N log2N) MACs. For sufficiently
large N , this approach should be faster.

D. Richard Brown III 2 / 8



DSP: Fast FIR Filtering with the FFT

Matlab Example

% Example showing fast convolution with FFT

m_test = 12:19;

results = zeros(2,length(m_test));

i1 = 0;

for m=m_test,

i1 = i1+1;

N = 2^m; % length of sequences

x1 = randn(1,N); % make sequence 1

x2 = randn(1,N); % make sequence 2

tic

x3c = conv(x1,x2); % conventional convolution

results(1,i1) = toc;

tic

x3f = ifft(fft(x1,2*N-1).*fft(x2,2*N-1)); % fast convolution

results(2,i1)= toc;

end

semilogy(m_test,results,’Linewidth’,2); grid on

xlabel(’sequence length 2^m’); ylabel(’elapsed time (seconds)’);

legend(’conventional convolution’,’fast convolution’);

D. Richard Brown III 3 / 8



DSP: Fast FIR Filtering with the FFT

Example Results

12 13 14 15 16 17 18 19
10

−3

10
−2

10
−1

10
0

10
1

10
2

sequence length 2
m

e
la

p
s
e
d
 t
im

e
 (

s
e
c
o
n
d
s
)

 

 

conventional convolution

fast convolution

D. Richard Brown III 4 / 8



DSP: Fast FIR Filtering with the FFT

What if x[n] is an Infinite Length Sequence?

In a real-time DSP scenario, the input sequence is usually not finite length.
Can we still use fast convolution?

The answer is yes but we have to break x[n] into blocks, process each
block separately, and carefully re-assemble the results.

There are two common methods (both based on block processing):

1. “Overlap-and-add”

2. “Overlap-and-save”

Notation:

I FIR filter length: Q

I FFT length: N

I Input block length: M = N − (Q− 1).

D. Richard Brown III 5 / 8



DSP: Fast FIR Filtering with the FFT

Overlap-and-Add

Main steps:

1. Select FFT size N such that
N = 2m and N ≈ 2Q.

2. Compute N -point FFT
h[n]→ H[m] for m = 0, . . . , N − 1.

3. Let M = N − (Q− 1).

4. Fill length-M block xi[n] and
append Q− 1 zeros.

5. Take N -point FFT xi[n]→ Xi[m]
for m = 0, . . . , N − 1.

6. Compute Yi[m] = Xi[m]H[m] for
m = 0, . . . , N − 1.

7. Compute N -point IFFT
Yi[m]→ yi[n] for n = 0, . . . , N − 1

8. Add the first Q− 1 samples of yi[n]
to the last Q− 1 samples of yi−1[n].

9. Go to step 4.

Remark: Different values of N may give
better results (less computation). (Figure from Richard G. Lyons “Understanding Digital Signal

Processing” (Prentice Hall)).

D. Richard Brown III 6 / 8



DSP: Fast FIR Filtering with the FFT

Overlap-and-Save
Main steps:

1. Select FFT size N such that
N = 2m and N ≈ 4Q.

2. Compute N -point FFT
h[n]→ H[m] for m = 0, . . . , N − 1.

3. Let M = N − (Q− 1).

4. Fill length-M block xi[n] and
prepend the last Q− 1 samples from
xi−1[n].

5. Take N -point FFT xi[n]→ Xi[m]
for m = 0, . . . , N − 1.

6. Compute Yi[m] = Xi[m]H[m] for
m = 0, . . . , N − 1.

7. Compute N -point IFFT
Yi[m]→ yi[n] for n = 0, . . . , N − 1

8. Discard the first Q− 1 samples of
yi[n].

9. Go to step 4.

Remark: Different values of N may give
better results (less computation).

(Figure from Richard G. Lyons “Understanding Digital Signal
Processing” (Prentice Hall)).

D. Richard Brown III 7 / 8



DSP: Fast FIR Filtering with the FFT

Remarks

1. Computational requirements do not change with FIR filter length Q
unless N is changed.

2. FFT of h[n] only needs to be computed once.

3. Choosing between overlap-and-add vs. overlap-and-save depends on
several factors, including:

3.1 Fixed/floating point arithmetic
3.2 Memory constraints
3.3 Latency constraints
3.4 Hardware architecture, e.g., pipelining
3.5 Specialized DSP instruction sets

D. Richard Brown III 8 / 8


