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Fourier Analysis of CT Signals with the DFT

Scenario:

Ideally, would like to compute the DTFT of the sequence x[n] since we
have a direct relationship between X(ejω) and Xc(jΩ), i.e.,

X(ejω) =
1

T

∞∑
r=−∞

Xc

(
j

(
ω

T
− 2πr

T

))
In practice, we can usually only compute the DFT (via the FFT). Since
the DFT operates on a finite number of samples, we usually must apply a
window function w[n] to the sequence x[n] prior to computing the DFT.
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Common Window Functions (window length M + 1)

I Main lobe width ∆ML is defined as the distance between the first nulls in
the DTFT of the window W (ejω).

I Relative side lobe amplitude ASL is the ratio (in dB) of the amplitude of the
main lobe to the amplitude of the largest side lobe. The sign of this
parameter is inconsistent.
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Effect of Window Function

Recall that multiplication in the time
domain leads to convolution in the
frequency domain, i.e.,

V (ejω) =
1

2π

∫ π

−π
X(ejγ)W (ej(ω−γ)) dγ

One effect of the window is that it “blurs”
any sharp features in the original DTFT
X(ejω).
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Computing the DFT: Relating k and Ω

Recall that the DFT is computed on the windowed sequence v[n] of length
M + 1. The length-N DFT (usually N = M + 1) is then

V [k] =

M∑
n=0

v[n]W kn
N

for k = 0, . . . , N − 1 with WN = e−j2π/N .

Since
V [k] = V (ejω)|ω=2πk/N

and ω = ΩT we can relate the frequency index k to the original
continuous time frequency as

Ω =
2πk

TN
=

Ωsk

N

where Ωs = 2π
T is the radian sampling frequency.
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Using fftshift

When computing the DFT in Matlab, we use the fft command. This returns V [k] for
k = 0, . . . , N − 1 which corresponds to frequencies

Ω = 0,
Ωs
N
,

2Ωs
N

, . . . ,
(N − 1)Ωs

N
.

Sometimes we prefer to visualize the frequency response over −Ωs
2

to Ωs
2

We can use
the Matlab command fftshift to swap the left and right halves of X[k] so that

Ω =
−N

2
Ωs

N
,

(
−N

2
+ 1
)

Ωs

N
, . . . ,

(
N
2
− 1
)

Ωs

N

Example:

N = 16; % signal length

T = 1/8; % sampling period

n = 0:N-1; % discrete time indices

Omega_s = 2*pi/T; % radian sampling frequency

v = sin(2*pi*n*T); % make finite-length signal

subplot(2,1,1); stem(n*Omega_s/N,abs(fft(v)));

xlabel(’\Omega’); ylabel(’magnitude response’);

subplot(2,1,2); stem((n-8)*Omega_s/N,abs(fftshift(fft(v))));

xlabel(’\Omega’); ylabel(’magnitude response’);
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fftshift Example
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Choosing the Window and DFT Length N : Example

Suppose we have a continuous-time signal

sc(t) = sin(2π970t) + sin(2π990t)

and we want the two frequencies present in this signal to line up exactly at
separate DFT frequency indices k1 and k2 without aliasing. Assume a
rectangular window.

Since Ω = Ωsk
N and Ωs = 2π

T , we can write

970 ·NT = k1

990 ·NT = k2

where N , k1, and k2 are all integers. Some possible solutions:

I T = 1
2000 and N = 200 so that k1 = 97 and k2 = 99

I T = 1
2000 and N = 400 so that k1 = 194 and k2 = 198

I T = 1
4000 and N = 400 so that k1 = 97 and k2 = 99
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Example Continued
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T=1/4000, N = 400
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Frequencies Corresponding to Non-Integer DFT Indices
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T=1/4000, N = 200
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Remarks

I In the first three examples, the signal v[n] contained an integer
number of periods of sc(t).

I In the last example, the signal v[n] contained a non-integer number of
periods of sc(t).

I Recall the relationship between the DFT and the DFS:

V [k] = Ṽ [k] k = 0, . . . , N − 1

Since ṽ[n]↔ Ṽ [k] is the periodic extension of the finite-length signal
v[n]↔ V [k], we get undesirable discontinuities in ṽ[n] if v[n]
contains a non-integer number of periods of sc(t).

v[n]

ṽ[n]
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