Digital Signal Processing
The Short-Time Fourier Transform (STFT)

D. Richard Brown III
For signals that have frequency content that is **changing over time**, e.g., music, speech, ..., taking the DFT of the whole signal usually doesn’t provide much insight.

Example: Two second linear chirp

```matlab
N = 16000;
n = 0:N-1;
x = cos(2*pi/80000*(n+1000).^2); % linear chirp
soundsc(x,8000) % listen to sound
```
Example Continued: FFT of Whole Signal

```matlab
plot(2*n/N,20*log10(abs(fft(x)))); % FFT of whole signal
```
plot(2*[0:127]/128,20*log10(abs(fft(x(1:128))))); % FFT near beginning
plot(2*[0:127]/128,20*log10(abs(fft(x(8001:8128))))); % FFT near middle
plot(2*[0:127]/128,20*log10(abs(fft(x(15001:15128))))); % FFT near end
Short-Time Fourier Transform

Rather than analyzing the frequency content of the whole signal, we can analyze the frequency content of smaller snapshots. The STFT is defined as

\[X[n, \lambda] = \sum_{m=-\infty}^{\infty} x[n + m]w[m]e^{-j\lambda m} \]

where \(n \in \mathbb{Z} \) is a time index and \(\lambda \in \mathbb{R} \) is a normalized frequency index.

Remarks:

1. Implicit in this definition is a window function \(w[n] \) of length \(L \).
2. The STFT results in a family of DTFTs indexed by \(n \).
3. In practice, we don’t usually compute \(X[n, \lambda] \) for all \(n = 0, 1, \ldots \) since the frequency content of the signal does not change much from sample to sample. Instead, we typically pick a “block shift” integer \(R \leq L \) and compute the STFT for values of \(n = 0, R, 2R, \ldots \).
Short-Time Fourier Transform

DSP: The Short-Time Fourier Transform (STFT)

\[x[n] \]

\[w[n] \]

\[x[n]w[n] \]

\[x[n+8]w[n] \]

\[x[n+16]w[n] \]

\[X[0, \lambda) \]

\[X[8, \lambda) \]

\[X[16, \lambda) \]

\[\text{etc.} \]
Short-Time Fourier Transform with the DFT/FFT

We can also use the DFT/FFT to compute the STFT as

\[
X[n, k] = \sum_{m=0}^{L-1} x[n + m]w[m]e^{-j2\pi km/N}.
\]

![Diagram of STFT computation using DFT/FFT](image)
Short-Time Fourier Transform Parameters

1. Window type
 ▶ Tradeoff between side lobe amplitude A_{SL} and main lobe width Δ_{ML}

2. Window length L
 ▶ Larger L gives better frequency resolution (smaller Δ_{ML})
 ▶ Smaller L gives less temporal averaging

3. Temporal block shift samples R
 ▶ Usually $R \leq L$ and is related to L, e.g., $R = L$ or $R = L/2$
 ▶ Larger R result in less computation
 ▶ Smaller R gives “smoother” results

4. FFT length N
 ▶ Usually $N \geq L$
 ▶ Larger N gives more frequency-domain samples of DTFT (better location and amplitude of peaks)
 ▶ Smaller N results in less computation.
Matlab function `spectrogram` is useful for easily computing STFTs.

```matlab
[s,f,t] = spectrogram(x,kaiser(512,2),256,1024,8000); % x = lin chirp
image(t,f,20*log10(abs(s))); set(gca,'ydir','normal'); colorbar;
```
MATLAB Spectrogram Example (decrease R to 1)

```matlab
[s,f,t] = spectrogram(x,kaiser(512,2),511,1024,8000); % x = lin chirp
image(t,f,20*log10(abs(s))); set(gca,'ydir','normal'); colorbar;
```
MATLAB Spectrogram Example (rectangular window)

```
[s,f,t] = spectrogram(x,ones(512,1),511,1024,8000); % x = lin chirp
image(t,f,20*log10(abs(s))); set(gca,'ydir','normal'); colorbar;
```
MATLAB Spectrogram Example (longer window)

```
[s,f,t] = spectrogram(x,kaiser(1024,2),1023,1024,8000);  % x = lin chirp
image(t,f,20*log10(abs(s)));  set(gca,'ydir','normal');  colorbar;
```
Speech Signals Example

ref-mic [quiet]

phys-mic [quiet]

TERC sensor [quiet]

ref-mic [high-noise]

phys-mic [high-noise]

TERC sensor [high-noise]
“Aphex Face” Spectrogram (log scale frequency axis)

From bastwood.com