Digital Signal Processing The Inverse *z*-Transform

D. Richard Brown III

Inverse *z*-Transform

The inverse z-transform is based on a special case of the Cauchy integral theorem

$$\frac{1}{2\pi j} \oint_C z^{-\ell} dz = \begin{cases} 1 & \ell = 1\\ 0 & \ell \neq 1 \end{cases}$$

where C is a counterclockwise contour that encircles the origin. If we multiply X(z) by z^{n-1} and compute

$$\frac{1}{2\pi j} \oint_C X(z) z^{n-1} dz = \frac{1}{2\pi j} \oint_C \sum_{m=-\infty}^{\infty} x[m] z^{-m+n-1} dz$$
$$= \sum_{m=-\infty}^{\infty} x[m] \underbrace{\frac{1}{2\pi j} \oint_C z^{-(m-n+1)} dz}_{=1 \text{ only when } m-n+1=1}$$
$$= \sum_{m=-\infty}^{\infty} x[m] \delta(m-n)$$
$$= x[n]$$

Hence, the inverse z-transform of X(z) is defined as $x[n] = \frac{1}{2\pi j} \oint_C X(z) z^{n-1} dz$ where C is a counterclockwise closed contour in the ROC of X(z) encircling the origin.

Inverse *z*-Transform via Cauchy's Residue Theorem

Denote the unique poles of X(z) as $\lambda_1, \ldots, \lambda_R$ and their algebraic multiplicities as m_1, \ldots, m_R . As long as R is finite (which is the case if X(z) is rational) we can evaluate the inverse z-transform via Cauchy's residue theorem which states

$$x[n] = \frac{1}{2\pi j} \oint_C X(z) z^{n-1} dz = \sum_{\lambda_k \text{ inside } C} \operatorname{Res}(X(z) z^{n-1}, \lambda_k, m_k)$$

where $\operatorname{Res}(F(z), \lambda_k, m_k)$ is the "residue" of $F(z) = X(z)z^{n-1}$ at the pole λ_k with algebraic multiplicity m_k , defined as

$$\operatorname{Res}(F(z), \lambda_k, m_k) = \frac{1}{(m_k - 1)!} \left[\frac{d^{m_k - 1}}{dz^{m_k - 1}} \left\{ (z - \lambda_k)^{m_k} F(z) \right\} \right]_{z = \lambda_k}$$

In other words, Cauchy's residue theorem allows us to compute the contour integral by computing derivatives.

Other Methods for Computing Inverse *z*-Transforms

Cauchy's residue theorem works, but it can be tedious and there are lots of ways to make mistakes. The Matlab function residuez (discrete-time residue calculator) can be useful to check your results.

Other (typically easier) options for computing inverse *z*-transforms:

- 1. Inspection (table lookup).
- 2. Partial fraction expansion (only for rational *z*-transforms).
- 3. Power series expansion (can be used for non-rational *z*-transforms).

Inspection Method

Sequence	Transform	ROC
1. δ[n]	1	All z
2. <i>u</i> [<i>n</i>]	$\frac{1}{1-z^{-1}}$	z > 1
3. $-u[-n-1]$	$\frac{1}{1-z^{-1}}$	z < 1
4. $\delta[n - m]$	z ^{-m}	All z except 0 (if $m > 0$) or ∞ (if $m < 0$)
5. $a^n u[n]$	$\frac{1}{1 - az^{-1}}$	z > a
6. $-a^n u[-n-1]$	$\frac{1}{1-az^{-1}}$	z < a
7. na ⁿ u[n]	$\frac{az^{-1}}{(1-az^{-1})^2}$	z > a
8. $-na^{n}u[-n-1]$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z < a
9. $\cos(\omega_0 n)u[n]$	$\frac{1 - \cos(\omega_0) z^{-1}}{1 - 2\cos(\omega_0) z^{-1} + z^{-2}}$	z > 1
10. $\sin(\omega_0 n)u[n]$	$\frac{\sin(\omega_0)z^{-1}}{1 - 2\cos(\omega_0)z^{-1} + z^{-2}}$	z > 1
11. $r^n \cos(\omega_0 n) u[n]$	$\frac{1 - r\cos(\omega_0)z^{-1}}{1 - 2r\cos(\omega_0)z^{-1} + r^2z^{-2}}$	z > r
12. $r^n \sin(\omega_0 n) u[n]$	$\frac{r\sin(\omega_0)z^{-1}}{1-2r\cos(\omega_0)z^{-1}+r^2z^{-2}}$	z > r
13. $\begin{cases} a^n, & 0 \le n \le N - 1, \\ 0, & \text{otherwise} \end{cases}$	$\frac{1 - a^N z^{-N}}{1 - a z^{-1}}$	z > 0

TABLE 3.1 SOME COMMON z-TRANSFORM PAIRS

Partial Fraction Expansion Method

lf

$$X(z) = \frac{b_0 + b_1 z^{-1} + b_2 z^{-2} + \dots + b_M z^{-M}}{1 + a_1 z^{-1} + a_2 z^{-2} + \dots + a_N z^{-N}}$$

with all N poles distinct ("first order") then it is possible to express

$$X(z) = \underbrace{\sum_{r=0}^{M-N} B_r z^{-1}}_{\text{only if } M \ge N} + \sum_{k=1}^{N} \frac{A_k}{1 - \lambda_k z^{-1}}$$

The inverse *z*-transform then follows directly from linearity and table lookup (pay attention to the ROC). There are many ways to determine A_1, \ldots, A_k , for example

$$A_k = \left[(1 - \lambda_k z^{-1}) X(z) \right]_{z = \lambda_k}$$

Power Series Expansion Method

The idea here is to write $\boldsymbol{X}(\boldsymbol{z})$ as

$$X(z) = \dots + c_{-2}z^{2} + c_{-1}z + c_{0} + c_{1}z^{-1} + c_{2}z^{-2} + \dots$$

and recognize that $x[n] = c_n$ by the definition of the z-transform. This can work even for non-rational X(z).

For example, suppose a > 0 and

$$X(z) = e^{az^{-1}}$$

and note the ROC is the whole complex plane except z = 0. We can use the series expansion

$$X(z) = \sum_{k=0}^{\infty} \frac{(az^{-1})^n}{n!} = 1 + \frac{a}{1}z^{-1} + \frac{a^2}{2}z^{-2} + \frac{a^4}{6}z^{-3} + \dots$$

hence $x[n] = \frac{a^n}{n!}u[n]$.