Digital Signal Processing z-Transform Properties

D. Richard Brown III

Property	Section			
Number	Reference	Sequence	Transform	ROC
		x[n]	X(z)	R_x
		$x_1[n]$	$X_1(z)$	R_{x_1}
		$x_2[n]$	$X_2(z)$	R_{x_2}
1	3.4.1	$ax_1[n] + bx_2[n]$	$aX_1(z) + bX_2(z)$	Contains $R_{x_1} \cap R_{x_2}$
2	3.4.2	$x[n-n_0]$	$z^{-n_0}X(z)$	R_x , except for the possible addition or deletion of the origin or ∞
3	3.4.3	$z_0^n x[n]$	$X(z/z_0)$	$ z_0 R_x$
4	3.4.4	nx[n]	$-z\frac{dX(z)}{dz}$	R_x
5	3.4.5	$x^*[n]$	$X^*(z^*)$	R_x
6		$\mathcal{R}e\{x[n]\}$	$\frac{1}{2}[X(z)+X^*(z^*)]$	Contains R_x
7		$\mathcal{I}m\{x[n]\}$	$\frac{1}{2i}[X(z) - X^*(z^*)]$	Contains R_x
8	3.4.6	$x^{*}[-n]$	$X^{2}(1/z^*)$	$1/R_x$
9	3.4.7	$x_1[n] \ast x_2[n]$	$X_1(z)X_2(z)$	Contains $R_{x_1} \cap R_{x_2}$

TABLE 3.2 SOME z-TRANSFORM PROPERTIES

Linearity and Time-Shifting Example

As an example, suppose

$$x[n] = (a^n + 1)u[n - 2]$$

One way to compute the z-transform in this case is to rewrite

$$x[n] = \{0, \dots, \underline{0}, 0, a^2 + 1, a^3 + 1, \dots\} = a^2 a^{n-2} u[n-2] + u[n-2]$$

Recognize that a^2 is just a constant, so we have

$$X(z) = a^{2} z^{-2} \frac{1}{1 - az^{-1}} + z^{-2} \frac{1}{1 - z^{-1}}$$
$$= \frac{z^{-2} (a^{2} - a^{2} z^{-1} + 1 - az^{-1})}{(1 - az^{-1})(1 - z^{-1})}$$

with ROC $|z|>\max\{1,|a|\}$ since this is a right-sided sequence.

Upsampling Property

Suppose L is a positive integer and

$$ilde{x}[n] = egin{cases} x[n/L] & n/L ext{ is an integer} \\ 0 & ext{otherwise.} \end{cases}$$

Then

$$\tilde{X}(z) = X(z^L).$$

We can see this from the definition

$$\begin{split} \tilde{X}(z) &= \sum_{n=\dots,-L,0,L,\dots} x[n/L] z^{-n} \\ &= \sum_{m=\dots,-1,0,1,\dots} x[m] z^{-mL} \\ &= \sum_{m=\dots,-1,0,1,\dots} x[m] (z^L)^{-m} \\ &= X(z^L) \end{split}$$

If the ROC for X(z) is |a|<|z|<|b|, the ROC for $\tilde{X}(z)$ is $|a|^{1/L}<|z|<|b|^{1/L}.$

DSP: *z*-Transform Properties

Downsampling Property (1 of 2)

Suppose L is a positive integer and

$$\tilde{x}[n] = x[nL]$$

Then

$$\tilde{X}(z) = \frac{1}{L} \sum_{r=0}^{L-1} X\left(z^{1/L} e^{-j2\pi r/L}\right)$$

To see this, compute

$$\tilde{X}(z) = \sum_{n=-\infty}^{\infty} x[nL] z^{-n}$$
$$= \sum_{m=-\infty}^{\infty} x[m] z^{-m/L} \mathbb{I}_{m=kL}$$

where $\mathbb{I}_{m=kL} = 1$ when m is an integer multiple of L and zero otherwise.

DSP: *z*-Transform Properties

Downsampling Property (2 of 2)

Note that

$$\frac{1}{L} \sum_{r=0}^{L-1} e^{j(2\pi m/L)r} = \mathbb{I}_{m=kL}$$

Hence,

$$\begin{split} \tilde{X}(z) &= \sum_{m=-\infty}^{\infty} x[m] z^{-m/L} \mathbb{I}_{m=kL} \\ &= \sum_{m=-\infty}^{\infty} x[m] z^{-m/L} \frac{1}{L} \sum_{r=0}^{L-1} e^{j(2\pi m/L)r} \\ &= \frac{1}{L} \sum_{r=0}^{L-1} \sum_{m=-\infty}^{\infty} x[m] z^{-m/L} e^{j(2\pi m/L)r} \\ &= \frac{1}{L} \sum_{r=0}^{L-1} \sum_{m=-\infty}^{\infty} x[m] \left(z^{1/L} e^{-j2\pi r/L} \right)^{-m} \\ &= \frac{1}{L} \sum_{r=0}^{L-1} X \left(z^{1/L} e^{-j2\pi r/L} \right) \end{split}$$

If the ROC for X(z) is |a| < |z| < |b| then the ROC for $\tilde{X}(z)$ is $|a|^L < |z| < |b|^L$.