# Digital Signal Processing Polyphase Implementation of Filtering

D. Richard Brown III



# A Problem With Exchanging The Order of Up/Downsampling and Filtering

Recall our equivalent structures:



We prefer (a) in both cases because the filtering is done at the lower sampling rate.

This can be directly implemented in some cases, e.g. M = 2 and  $H(z^M) = 1 + z^{-2}$ . It is clear that  $H(z) = 1 + z^{-1}$ .

But what if M=2 and  $H(z^M)=1+z^{-1}+z^{-2}?$  Does  $H(z)=1+z^{-1/2}+z^{-1}$  make sense?

#### Polyphase Sequence Decompositions

Given an integer  $M \ge 1$ , we can decompose any discrete-time sequence h[n] into M subsequences defined as

$$e_k[n] = h[nM + k]$$

for k = 0, ..., M - 1.

For example, suppose  $h[n]=\{\underline{1},2,3,4,5,6\}.$  An M=2 polyphase decomposition results in

$$e_0[k] = \{\underline{1}, 3, 5\}$$
  
 $e_1[k] = \{\underline{2}, 4, 6\}$ 

An M = 3 polyphase decomposition results in

$$e_0[k] = \{\underline{1}, 4\}$$
  

$$e_1[k] = \{\underline{2}, 5\}$$
  

$$e_2[k] = \{\underline{3}, 6\}$$

#### Polyphase Components — Original Sequence

To recover the original sequence from the polyphase components, we can

- 1. Upsample each polyphase component by  ${\cal M}$
- 2. Delay the  $k^{\text{th}}$  upsampled component by k samples.
- 3. Sum.

Decomposition/reconstruction:



## Polyphase Decimation System

Suppose we had an  $N\mbox{-}{\rm coefficient}$  FIR filtering system like



Note that M-1 of the M filter outputs are discarded. Is there a better way to do this?



Direct implementation requires  $\approx N$  MACs per input sample.

Polyphase implementation:

- Samples arrive at each polyphase filter at a rate of <sup>1</sup>/<sub>M</sub> the original sampling rate.
- Each subfilter has  $\frac{N}{M}$  coefficients.

Hence each subfilter requires  $\approx \frac{1}{M} \cdot \frac{N}{M}$ MACs per input sample. The total is then  $\approx \frac{N}{M}$  MACs per input sample.

Computational savings achieved by filtering at the lower sampling rate.

### Polyphase Interpolation System

Along the same lines, Suppose we had an N-coefficient FIR filtering system like



Note that L - 1 of the L filter inputs are zero. Is there a better way to do this?



Direct implementation requires  $\approx LN$  MACs per input sample.

Polyphase implementation:

- Samples arrive at each polyphase filter at the original sampling rate.
- Each subfilter has  $\frac{N}{L}$  coefficients.

Hence each subfilter requires  $\approx \frac{N}{L}$ MACs per input sample. The total is then  $\approx N$  MACs per input sample.

Computational savings achieved by filtering at the lower sampling rate.

#### Remarks

- Exchanging the order of filtering and up/down-sampling can lead to equivalent systems with less computational requirements.
- Polyphase implementation allows this exchange to be possible for general filters.
- Matlab function upfirdn uses a polyphase interpolation structure.
- Also see Matlab function resample.
- Y = resample(X,P,Q) resamples the sequence in vector X at P/Q times the original sample rate using a polyphase implementation.