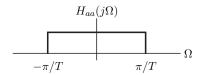
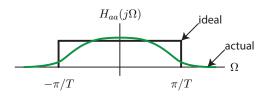

Digital Signal Processing Practical Antialiasing Filters

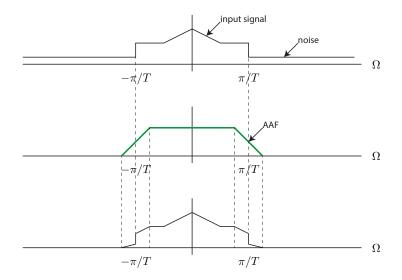

D. Richard Brown III

Antialiasing Basics

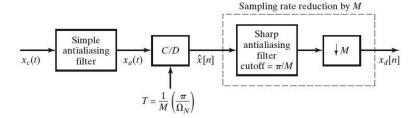
Since we usually wish to avoid aliasing in DSP systems, an antialiasing filter is often placed before the sampling operation:



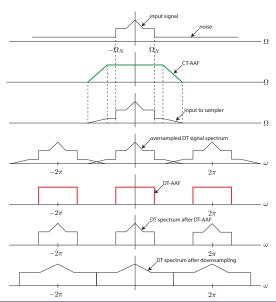
An ideal antialiasing filter has a lowpass response:


This blocks all of the frequencies that could cause aliasing before sampling. This is also often used to remove high-frequency noise prior to sampling.

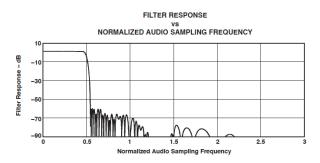
Antialiasing: Ideal vs. Actual



- $ightharpoonup H_{aa}$ is a continuous-time filter.
- ▶ Sharp cutoff CT filters are difficult and expensive to implement.
- Sharp cutoff CT filters typically have highly nonlinear phase response near the cutoff frequency.
- ► Tradeoff between distorting desired signal and letting noise through.
- ▶ What if you want to change the sampling rate?


Effect of Nonideal Antialiasing

Practical Antialiasing via Oversampling


Practical Antialiasing via Oversampling

Remarks

- ▶ Real-world oversampling rates can be quite large, e.g. 256 or 384.
- ► Can use a very simple CT anti-aliasing filter.
- ▶ DT antialiasing filter can be very sharp and have linear phase.
- Can easily change sampling frequencies.
- ▶ The same ideas can be used to make simple reconstruction filters.

AIC23 codec DT-AAF example (from datasheet):

