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A Simple DSP System

Suppose we wish to implement the transfer function / difference equation

H(z) =
1

1− az−1
⇔ y[n] = x[n] + ay[n− 1]

We could draw a block diagram (realization) of a complete system:

ideal sampling ideal reconstructionx(t)
x[n] y[n]

y(t)

z−1

a

Unfortunately, this block diagram represents an idealized view of how the
system is actually going to work. Some practical considerations:

◮ Input/output quantization.
◮ Filter coefficient quantization.
◮ Product roundoff.
◮ Potential overflow in sums.
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A Simple DSP System: A More Realistic View

ideal sampling ideal reconstructionx(t)
x̂[n] ŷ[n]

y(t)

z−1

a
â

Q()

Q()

Q()

Q()Q()

Our nice simple LTI system is now highly nonlinear.

In general, nonlinear systems like this are difficult to analyze. Hence, we
must isolate the sources of quantization error and adopt some approximate
approaches to make the analysis tractable.
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Quantization Basics

Given a real number x, we denote the quantized value of x as

x̂ = Q(x) = x+ ǫ

where ǫ is the “quantization error”.

There are two main types of quantization:

1. Truncation: just discard least significant bits

2. Rounding: choose closest value

As an example, suppose we want to quantize 1
√

2
≈ 0.7071 to a fixed point

number with two fractional bits. If we truncate, we have

Q(1/
√
2) = 0∆10 110 · · · = 0.50

whereas if we round, we have

Q(1/
√
2) = 0∆11 = 0.75

We usually prefer rounding because the quantization errors are zero-mean and
bounded −∆

2
≤ ǫ < ∆

2
, where ∆ is the quantizer step size (assuming no

overflow).
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Bipolar 3 Bit Quantizer Example

Note that ∆ =
2Xm

2B+1 =
Xm

2B
where 2Xm is the full-scale range of the quantizer and

B + 1 is the number of quantizer bits.
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Statistical Model of Input Quantization Error

Common assumptions to facilitate analysis:

1. e[n] is a uniformly distributed random variable between −∆

2
and ∆

2
.

2. e[n] is a stationary random process (its statistics don’t change over time).

3. e[n] is a white sequence, i.e., e[n] is uncorrelated with e[m] for all n 6= m.

4. e[n] is uncorrelated with x[n].
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Quantizer Signal-to-Noise Ratio Analysis

The variance of the quantization error of a B + 1 bit uniform quantizer can be
computed as

σ2

e =

∫ ∆/2

−∆/2

e2
1

∆
de =

∆2

12
=

X2
m

12 · 22B .

The SNR (in dB) of a B + 1 bit uniform quantizer is then

SNRQ = 10 log10

(

σ2
x

σ2
e

)

= 10 log10

(

12 · 22Bσ2
x

X2
m

)

= 6.02B + 10.8− 20 log10

(

Xm

σx

)

If we assume x[n] is Gaussian distributed and scale the quantizer/input so that
σx = Xm/4 (corresponding to a 0.064% chance of saturating the quantizer), this
result simplifies to

SNRQ = 6.02B + 10.8− 20 log10 (4) = 6.02B − 1.24 dB.
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