Digital Signal Processing Propagation of Quantization Noise to Filter Output

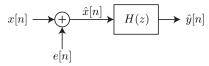
D. Richard Brown III

Propagation of Input Quantization Noise to Filter Output

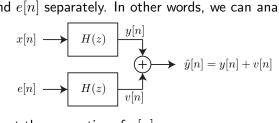
Since the quantized input to H(z) can be written as

$$\hat{x}[n] = x[n] + e[n]$$

we can think of input quantization as shown in below.



Since H(z) is linear, we can use the principle of superposition to analyze the effect of x[n] and e[n] separately. In other words, we can analyze



and look specifically at the properties of v[n].

Propagation of Input Quantization Noise to Filter Output

We now focus on analyzing

$$e[n] \longrightarrow H(z) \longrightarrow v[n]$$

We assume H(z) is stable. Since H(z) is an LTI system and $\{e[n]\}$ is a zero-mean independent random sequence, i.e. white noise, we can state the following results:

Output mean:

$$m_v = H(e^{j0})m_e = 0$$

Output variance:

$$\sigma_v^2 = \sigma_e^2 \cdot \frac{1}{2\pi} \int_{-\pi}^{\pi} |H(e^{j\omega})|^2 d\omega = \sigma_e^2 \cdot \sum_{n=-\infty}^{\infty} |h[n]|^2$$

Note that v[n] is not a white sequence, in general.

Propagation of Input Quantization Noise to Filter Output

Example:

$$H(z) = \frac{1}{1 - az^{-1}}$$

with |a| < 1 and ROC |z| > |a|. We can compute the output variance

$$\begin{split} \sigma_v^2 &= \sigma_e^2 \cdot \frac{1}{2\pi} \int_{-\pi}^{\pi} |H(\omega)|^2 \, d\omega \\ &= \sigma_e^2 \cdot \frac{1}{2\pi} \int_{-\pi}^{\pi} \left| \frac{1}{1 - ae^{-j\omega}} \right|^2 \, d\omega \\ &= \text{difficult integral} \end{split}$$

It is easier to note that $h[n] = a^n u[n]$ and compute

$$\sigma_v^2 = \sigma_e^2 \cdot \sum_{n = -\infty}^{\infty} |h[n]|^2 = \frac{\sigma_e^2}{1 - |\alpha|^2}.$$

What happens when α gets close to the unit circle?

Matlab Simulation of Input Quantization Noise Propagation

```
% output noise variance via simulation
% filter parameter
a = 0.8;
num = [1 0]; % numerator coefficients
den = [1 -a]; % denominator coefficients
N = 1e5; % number of samples
% generate input quantization noise sequence
e = rand(1,N)*delta-delta/2;
                                : ' num2str(var(e))]);
disp(['Input noise variance
% filter
v = filter(num,den,e);
% compute output noise variance
disp(['Output noise variance
                                : ' num2str(var(v))]);
disp(['Ratio
                                : ' num2str(var(v)/var(e))]);
disp(['Analytically predicted ratio : 'num2str(1/(1-abs(a)^2))]);
```

Power Spectrum of Quantization Noise

Since the quantization error is assumed to be white, we have the autocorrelation $\phi_{ee}[m]=\sigma_e^2\delta[m]$ and the power spectrum

$$\Phi_{ee}(e^{j\omega}) = \sum_{m=-\infty}^{\infty} \phi_{ee}[m]e^{j\omega m} = \sigma_e^2$$

for all $\omega.$ The power spectrum of the quantization error at the output of H(z) is then

$$\Phi_{vv}(e^{j\omega}) = |H(e^{j\omega})|^2 \Phi_{ee}(e^{j\omega}) = |H(e^{j\omega})|^2 \sigma_e^2.$$

In fact, after DT \to CT reconstruction with $\{v[n]\}\to e_a(t)$, the CT power spectral density of the quantization error at the output can be written as

$$\Phi_{e_a e_a}(j\Omega) = |H_r(j\Omega)H(e^{j\Omega T})|^2 \sigma_e^2$$

where $H_r(j\Omega)$ is the reconstruction filter (which may not be ideal).