Digital Signal Processing Inverse Systems

D. Richard Brown III

Inverse Systems and Equalization

$$x[n] \rightarrow H_1(z) \rightarrow H_2(z) \rightarrow y[n]$$

The system $H_2(z)$ is the inverse of $H_1(z)$ if y[n] = x[n]. This is equivalent to saying $H_1(z)H_2(z) = 1$ or $h_1[n] * h_2[n] = \delta[n]$.

Remarks:

- 1. Note that the zeros of $H_1(z)$ become the poles of $H_2(z)$.
- 2. Note that the inverse system may not have a unique impulse response unless you further constrain the inverse system to be causal and/or stable (which identifies the ROC).
- 3. It is often the case that a causal stable inverse can not be found. One workaround is to find a causal stable **generalized inverse** such that $H_1(z)H_2(z) = z^{-n_0}$ for some integer n_0 .

Inverse System Region of Convergence

Recall that $H_1(z)$ is associated with a region of convergence S_1 .

For $H_1(z)H_2(z) = 1$, there must be a non-empty set S such that **both** $H_1(z)$ and $H_2(z)$ converge for all $z \in S$.

Hence, $H_2(z)$ can have any valid ROC S_2 as long as $S_1 \cap S_2 \neq \emptyset$.

Example: Suppose

$$H_1(z) = \frac{1 - 0.5z^{-1}}{1 - 0.9z^{-1}}$$

with ROC $\mathcal{S}_1 = \{|z| > 0.9\}$. The inverse system is

$$H_2(z) = \frac{1 - 0.9z^{-1}}{1 - 0.5z^{-1}}$$

with two possible ROCs: $\{|z|<0.5\}$ or $\{|z|>0.5\}$. Only one of these ROCs has a non-empty intersection with \mathcal{S}_1 , however, hence $\mathcal{S}_2=\{|z|>0.5\}$. The inverse system is causal and stable.

Another Example

Suppose

$$H_1(z) = 1 - z^{-1}$$

with ROC $S_1 = \{|z| > 0\}$ since $H_1(z)$ is FIR. The inverse system is

$$H_2(z) = \frac{1}{1 - z^{-1}}$$

with two possible ROCs: $\{|z| < 1\}$ or $\{|z| > 1\}$. Either ROC has a non-empty intersection with S_1 , hence

$$h_2[n] = -u[-n-1]$$

for the first ROC or

$$h_2[n] = u[n]$$

for the second ROC. Both yield $h_1[n] * h_2[n] = \delta[n]$.

Some Properties of Inverse Systems

If h₁[n] is FIR and has two or more coefficients, h₂[n] will be IIR.
If H₁(z) is an all-pole IIR filter, i.e.,

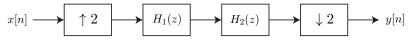
$$H_1(z) = \frac{b_0}{\prod_i (1 - p_i z^{-1})}$$

then $H_2(z)$ will be FIR.

► A LTI system H₁(z) is causal and stable and also has a causal and stable inverse if and only if the poles and the zeros of H₁(z) are inside the unit circle. Such systems are called "minimum phase".

Inverse in Multirate Systems (part 1 of 2)

Consider



and suppose $H_1(z)$ is FIR. It is often possible to find FIR $H_2(z)$ so that the overall system from x[n] to y[n] is $z^{-n_0} \leftrightarrow h[n-n_0]$ for some integer n_0 .

Example: Suppose $H_1(z) = 1 + 2z^{-1} + 3z^{-2} + 4z^{-3}$ and let $H_2(z) = 1 - 4.5z^{-1} + 6z^{-2}$. Note that both systems are FIR and $\bar{H}(z) = H_1(z)H_2(z) = 1 - 2.5z^{-1} - 2.5z^{-3} - 24z^{-5}$

This can be split into an M=2 branch polyphase representation with

$$E_0(z) = 1$$

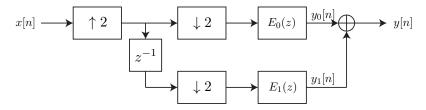
$$E_1(z) = -2.5 - 2.5z^{-1} - 24z^{-2}$$

such that $\bar{H}(z) = E_0(z^2) + z^{-1}E_1(z^2).$

DSP: Inverse Systems

Inverse in Multirate Systems (part 2 of 2)

We can write an equivalent system with a polyphase decimator as



with

$$E_0(z) = 1$$

$$E_1(z) = -2.5 - 2.5z^{-1} - 24z^{-2}$$

Note that $y_0[n] = x[n]$ and $y_1[n] = 0$. Hence y[n] = x[n] and the overall system from x[n] to y[n] is H(z) = 1.