Digital Signal Processing Minimum-Phase Systems

D. Richard Brown III

Phase Response Characterization of Transfer Function

Definition

A causal stable LTI system ${\cal H}$ with transfer function H(z) with all zeros inside the unit circle is called **minimum phase**.

Definition

A causal stable system \mathcal{H} with transfer function H(z) with all zeros outside the unit circle is called **maximum phase**.

Definition

A causal stable system $\mathcal H$ with transfer function H(z) with at least one zero inside the unit circle and at least one zero outside the unit circle is called **mixed phase**.

Minimum phase systems are important because they have a stable inverse G(z)=1/H(z). You can convert between $\min/\max/\min$ cascading allpass filters.

Minimum Phase Systems

When we say a system is "minimum phase", we mean that it has the least phase delay (or least phase lag) among all systems with the same magnitude response.

$$H_1(z) = 6 + z^{-1} - z^{-2}$$

$$= 6(1 + z^{-1}/2)(1 - z^{-1}/3)$$

$$H_2(z) = 1 - z^{-1} - 6z^{-2}$$

$$= (1 + 2z^{-1})(1 - 3z^{-1})$$

$$H_3(z) = 2 - 5z^{-1} - 3z^{-2}$$

$$= 2(1 + z^{-1}/2)(1 - 3z^{-1})$$

$$H_4(z) = 3 + 5z^{-1} - 2z^{-2}$$

$$= (1 + 2z^{-1})(1 - z^{-1}/3)$$

Minimum phase systems with real-valued impulse responses have $\angle H(e^{j0})=0.$

Phase Analysis

Recall that the phase response of a rational H(z) can be written as

$$\angle H(e^{j\omega}) = \angle \frac{b_0}{a_0} + \sum_{m=1}^{M} \angle (1 - c_m e^{-j\omega}) - \sum_{n=1}^{N} \angle (1 - d_n e^{-j\omega})$$

$$= \angle \frac{b_0}{a_0} + \sum_{m=1}^{M} \left[\angle (e^{j\omega} - c_m) - \angle e^{j\omega} \right] - \sum_{n=1}^{N} \left[\angle (e^{j\omega} - d_n) - \angle e^{j\omega} \right]$$

To have the least phase delay for a causal system, we must have

$$\angle(e^{j\omega} - c_m) > \angle(e^{j\omega} - 1/c_m^*)$$

for all $|c_m| < 1$. We will illustrate this graphically...

Minimum Phase ⇒ Minimum Group Delay

Suppose we have a rational transfer function with the term $(1-cz^{-1})$ in the numerator with $c=ae^{jb}$ and 0< a<1. We can write

$$\angle (1 - ce^{-j\omega}) = \angle (1 - ae^{-j(\omega - b)})$$

$$= \angle (1 - a\cos(\omega - b) + aj\sin(\omega - b))$$

$$= \arctan\left(\frac{a\sin(\omega - b)}{1 - a\cos(\omega - b)}\right)$$

Note that

$$\frac{\partial}{\partial \omega} \arctan\left(\frac{f(\omega)}{g(\omega)}\right) = \frac{f'(\omega)g(\omega) - g'(\omega)f(\omega)}{g^2(\omega) + f^2(\omega)}$$

Omitting the algebraic details, the group delay then follows as

$$\tau_g(\omega) = -\frac{\partial}{\partial \omega} \angle (1 - ce^{-j\omega}) = \frac{a^2 - a\cos(\omega - b)}{1 + a^2 - 2a\cos(\omega - b)} = \frac{a - \cos(\omega - b)}{a^{-1} + a - 2\cos(\omega - b)}$$

Note that the denominator is unaffected by replacing a with $a^{-1} > 1$. But the numerator gets larger if we replace a with $a^{-1} > 1$.

Minimum Phase ⇒ Minimum Energy Delay

Given a causal system with impulse response h[n], we can define the partial energy of the impulse response as

$$\mathcal{E}[n] = \sum_{k=0}^{n} |h[k]|^2.$$

A minimum phase system with impulse response $h_{\min}[n]$ has the property

$$\mathcal{E}_{\min}[n] = \sum_{k=0}^{n} |h_{\min}[k]|^2 \ge \sum_{k=0}^{n} |h[k]|^2 = \mathcal{E}[n]$$

for all $n \geq 0$ and all h[n] with the same magnitude response as $h_{\min}[n]$.

Recall our earlier example:

$$H_1(z) = 6 + z^{-1} - z^{-2}$$
 $\mathcal{E} = \{36, 37, 38\}$
 $H_2(z) = 1 - z^{-1} - 6z^{-2}$ $\mathcal{E} = \{1, 2, 38\}$
 $H_3(z) = 2 - 5z^{-1} - 3z^{-2}$ $\mathcal{E} = \{4, 29, 38\}$
 $H_4(z) = 3 + 5z^{-1} - 2z^{-2}$ $\mathcal{E} = \{9, 34, 38\}$