Digital Signal Processing Minimum-Phase All-Pass Decomposition

D. Richard Brown III

Minimum-Phase All-Pass Decomposition

Suppose we have a causal stable rational transfer function H(z) with one or more zeros outside the unit circle. We denote the zeros outside the unit circle as $\{c_1,\ldots,c_M\}$.

We can form a minimum phase system with the same magnitude response by reflecting these poles to their conjugate symmetric locations inside the unit circle, i.e.,

$$H_{\min}(z) = H(z) \cdot \underbrace{\frac{z^{-1} - c_1^*}{1 - c_1 z^{-1}} \cdots \frac{z^{-1} - c_M^*}{1 - c_M z^{-1}}}_{\text{unit-magnitude all-pass filter}}$$

It should be clear that $H_{\min}(z)$ and H(z) have the same magnitude response. Moreover, we have the decomposition

$$H(z) = H_{\min}(z) \cdot \left(\frac{z^{-1} - c_1^*}{1 - c_1 z^{-1}} \cdots \frac{z^{-1} - c_M^*}{1 - c_M z^{-1}}\right)^{-1} = H_{\min}(z) H_{\mathrm{ap}}(z)$$

where $H_{\rm ap}(z)$ is an all-pass filter.

Example 1 (part 1 of 2)

Suppose

$$H(z) = \frac{1 - 2z^{-1}}{1 + \frac{1}{3}z^{-1}}$$

This system is clearly not minimum phase since it has a zero at z=2. We can reflect this zero inside the unit circle with an all-pass filter to write

$$H_{\min}(z) = H(z) \cdot \frac{z^{-1} - 2}{1 - 2z^{-1}}$$
$$= \frac{z^{-1} - 2}{1 + \frac{1}{2}z^{-1}}$$

hence

$$H(z) = \underbrace{\frac{z^{-1} - 2}{1 + \frac{1}{3}z^{-1}}}_{H_{\min}(z)} \cdot \underbrace{\frac{1 - 2z^{-1}}{z^{-1} - 2}}_{H_{\operatorname{ap}}(z)}$$

Example 1 (part 2 of 2)

Note that, just requiring the zeros to be inside the unit circle does not uniquely specify $H_{\min}(z)$. For example, we could also write

$$H(z) = \underbrace{\frac{2 - z^{-1}}{1 + \frac{1}{3}z^{-1}}}_{G_{\min}(z)} \cdot \underbrace{\frac{2z^{-1} - 1}{z^{-1} - 2}}_{G_{\operatorname{ap}}(z)}$$

where G = -H for both systems. Does it matter which one we pick?

To satisfy the minimum phase delay property, recall that we require $\angle H_{\min}(e^{j0})=0.$ Note that

$$H_{\min}(e^{j0}) = \frac{1-2}{1+\frac{1}{3}} < 0 \text{ and } G_{\min}(e^{j0}) = \frac{2-1}{1+\frac{1}{3}} > 0$$

hence $\angle H_{\min}(e^{j0}) = -\pi$ and $\angle G_{\min}(e^{j0}) = 0$. The correct answer is to choose the $G_{\min}(z)G_{\rm ap}(z)$ decomposition.

Example 2

Suppose

$$H(z) = \frac{(1+3z^{-1})(1-\frac{1}{2}z^{-1})}{z^{-1}(1+\frac{1}{3}z^{-1})}$$

This is also clearly not minimum phase due to the zero at z=-3. We can reflect this zero inside the unit circle to write

$$H_{\min}(z) = H(z) \cdot \frac{z^{-1} + 3}{1 + 3z^{-1}}$$

$$= \frac{(z^{-1} + 3)(1 - \frac{1}{2}z^{-1})}{z^{-1}(1 + \frac{1}{3}z^{-1})}$$

$$= \frac{3(1 - \frac{1}{2}z^{-1})}{z^{-1}}$$

Recall that minimum phase filters must be causal. Since $H_{\min}(z)=3z-\frac{1}{2}$ is clearly not causal, we can factor out the z^{-1} denominator term (putting it in the all-pass filter since it does not affect the magnitude response) to arrive at

$$H(z) = \underbrace{3\left(1 - \frac{1}{2}z^{-1}\right)}_{H_{\min}(z)} \cdot \underbrace{\frac{z^{-1} + 3}{z^{-1}(1 + 3z^{-1})}}_{H_{\text{ap}}(z)}$$

Equalization of Nonminimum Phase Channel

Suppose
$$H_1(z)=\frac{(z-4)(z+5)}{(z+0.5)(z-0.3)}$$
 with ROC $|z|>0.5$.

We form the inverse system $H_2(z) = \frac{(z+0.5)(z-0.3)}{(z-4)(z+5)}$. Note that there is no causal stable inverse here.

One approach in this case is to factor $H_1(z)$ into a causal stable minimum phase filter and a causal stable allpass filter, i.e.

$$H_1(z) = H_{\min}(z)H_{\rm ap}(z) = \underbrace{\frac{(4z-1)(5z+1)}{(z+0.5)(z-0.3)}}_{\text{minimum phase}}\underbrace{\frac{(z-4)(z+5)}{(4z-1)(5z+1)}}_{\text{allpass}} \quad \text{ROC}: |z| > 0.5$$

and invert just the minimum phase component, i.e. $H_2(z)=\frac{(z+0.5)(z-0.3)}{(4z-1)(5z+1)}$.

Then $H_1(z)H_2(z) \neq 1$ but rather $H_1(z)H_2(z) = H_{\rm ap}(z)$. Hence, the equalizer $H_2(z)$ corrects the magnitude distortion, but leaves some residual phase distortion.