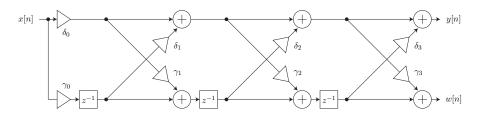
Digital Signal Processing FIR Cascaded Lattice Filters

D. Richard Brown III

FIR Cascaded Lattice Structures



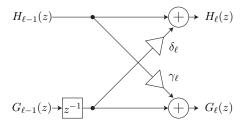
This approach can realize two FIR transfer functions:

$$H(z) = \frac{Y(z)}{X(z)}$$
 and $G(z) = \frac{W(z)}{X(z)}$.

Given a lattice structure block diagram, how do we determine H(z) and G(z) (lattice \to TF)?

Given a desired FIR H(z) and G(z) (or h[n] and g[n]), how do we determine the lattice coefficients (TF \rightarrow lattice)?

FIR Cascaded Lattice Structures (Lattice → TF)



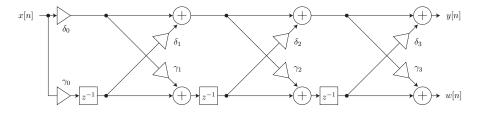
Analysis of single lattice segment:

$$H_{\ell}(z) = H_{\ell-1}(z) + z^{-1} \delta_{\ell} G_{\ell-1}(z)$$

$$G_{\ell}(z) = \gamma_{\ell} H_{\ell-1}(z) + z^{-1} G_{\ell-1}(z)$$

Since $H_0(z)=\delta_0X(z)$ and $G_0(z)=\gamma_0X(z)$, this recursion can be applied for $\ell=1,2,\ldots,N$ to determine the transfer functions H(z) and G(z) from the lattice coefficients.

Lattice \rightarrow TF Example



We can write

$$H_0(z) = \delta_0$$

$$G_0(z) = \gamma_0$$

$$H_1(z) = H_0(z) + \delta_1 z^{-1} G_0(z) = \delta_0 + \delta_1 z^{-1} \gamma_0$$

$$G_1(z) = \gamma_1 H_0(z) + z^{-1} G_0(z) = \gamma_1 \delta_0 + z^{-1} \gamma_0$$

$$H_2(z) = H_1(z) + \delta_2 z^{-1} G_1(z) = \delta_0 + \delta_1 z^{-1} \gamma_0 + \delta_2 z^{-1} (\gamma_1 \delta_0 + z^{-1} \gamma_0)$$

$$G_2(z) = \gamma_2 H_1(z) + z^{-1} G_1(z) = \gamma_2 (\delta_0 + \delta_1 z^{-1} \gamma_0) + z^{-1} (\gamma_1 \delta_0 + z^{-1} \gamma_0)$$

and so on.

FIR Cascaded Lattice Structures (TF \rightarrow Lattice)

To get a recursion for computing lattice coefficients given H(z) and G(z), we can redo our analysis, solving instead for $H_{\ell-1}(z)$ and $G_{\ell-1}(z)$, to get

$$H_{\ell-1}(z) = K_{\ell} [H_{\ell}(z) - \delta_{\ell} G_{\ell}(z)]$$

$$G_{\ell-1}(z) = K_{\ell} z [G_{\ell}(z) - \gamma_{\ell} H_{\ell}(z)]$$

where $K_\ell = \frac{1}{1 - \delta_\ell \gamma_\ell}$.

FIR Cascaded Lattice Structures (TF \rightarrow Lattice)

To get a recursion for computing lattice coefficients given H(z) and G(z), we can redo our analysis, solving instead for $H_{\ell-1}(z)$ and $G_{\ell-1}(z)$, to get

$$H_{\ell-1}(z) = K_{\ell} [H_{\ell}(z) - \delta_{\ell} G_{\ell}(z)]$$

$$G_{\ell-1}(z) = K_{\ell} z [G_{\ell}(z) - \gamma_{\ell} H_{\ell}(z)]$$

where $K_\ell = \frac{1}{1 - \delta_\ell \gamma_\ell}$.

Suppose, as an example, $\ell=2$ with $H_\ell(z)=h_0+h_1z^{-1}+h_2z^{-2}$ and $G_\ell(z)=g_0+g_1z^{-1}+g_2z^{-2}$. Then

$$H_1(z) = K_2 \left[h_0 + h_1 z^{-1} + h_2 z^{-2} - \delta_2 (g_0 + g_1 z^{-1} + g_2 z^{-2}) \right]$$

$$G_1(z) = K_2 z \left[g_0 + g_1 z^{-1} + g_2 z^{-2} - \gamma_2 (h_0 + h_1 z^{-1} + h_2 z^{-2}) \right]$$

Note that $H_1(z)$ and $G_1(z)$ can only be order 1 transfer functions. Hence we need the z^{-2} and z^{+1} terms to vanish, which happens when

$$z^{-2}$$
 term in $H_1(z)$ vanishes \Leftrightarrow $h_2 - \delta_2 g_2 = 0$ \Leftrightarrow $\delta_2 = \frac{h_2}{g_2}$ z^{+1} term in $G_1(z)$ vanishes \Leftrightarrow $g_0 - \gamma_2 h_0 = 0$ \Leftrightarrow $\gamma_2 = \frac{g_0}{h_0}$

FIR Cascaded Lattice Structures (TF \rightarrow Lattice)

Outline of procedure:

- 1. Set L equal to the filter order (impulse response length minus 1).
- 2. Set $H_L(z) = H(z)$ and $G_L(z) = G(z)$.
- 3. Set $\ell = L$.
- 4. Solve for δ_{ℓ} and γ_{ℓ} .
- 5. Compute $K_{\ell} = \frac{1}{1 \delta_{\ell} \gamma_{\ell}}$.
- 6. Compute $H_{\ell-1}(z)$ and $G_{\ell-1}(z)$. Both transfer functions should be order $\ell-1$. Note coefficients are affected by K_ℓ (you can't just say $H_{\ell-1}(z)$ is equal to the first $\ell-1$ coefficients of $H_\ell(z)$ or that $G_{\ell-1}(z)$ is equal to the first $\ell-1$ coefficients of $G_\ell(z)$).
- 7. Decrement ℓ.
- 8. If $\ell \geq 1$ go to step 4.
- 9. The final gains at the input are simply $\delta_0=H_0(z)$ and $\gamma_0=G_0(z)$ (these are both zero-order transfer functions).

$\mathsf{TF} \to \mathsf{Lattice}\ \mathsf{Example}$

Suppose
$$H(z) = 1 + 2z^{-1} + 3z^{-2}$$
 and $G(z) = 4 + 5z^{-1} + 6z^{-2}$.

- 1. We set $\ell=L=2$ and solve $\delta_2=\frac{3}{6}=\frac{1}{2}$ and $\gamma_2=\frac{4}{1}=4$.
- 2. We compute $K_2 = \frac{1}{1-2} = -1$.
- 3. We compute

$$H_1(z) = -1 \cdot \left[1 + 2z^{-1} + 3z^{-2} - \frac{1}{2} (4 + 5z^{-1} + 6z^{-2}) \right] = 1 + \frac{1}{2} z^{-1}$$

and

$$G_1(z) = -1z \left[4 + 5z^{-1} + 6z^{-2} - 4(1 + 2z^{-1} + 3z^{-2}) \right] = 3 + 6z^{-1}$$

- 4. Now set $\ell = 1$ and solve $\delta_1 = \frac{\frac{1}{2}}{6} = \frac{1}{12}$ and $\gamma_1 = \frac{3}{1} = 3$.
- 5. Compute $K_1 = \frac{1}{1 \frac{3}{12}} = \frac{4}{3}$.
- 6. Compute

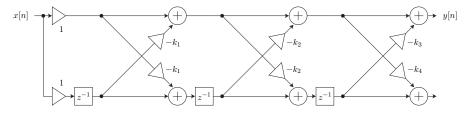
$$H_0(z) = \frac{4}{3} \cdot \left[1 + \frac{1}{2}z^{-1} - \frac{1}{12}(3 + 6z^{-1}) \right] = 1 = \delta_0$$

and

$$G_0(z) = \frac{4}{3}z\left[3 + 6z^{-1} - 3(1 + \frac{1}{2}z^{-1})\right] = 6 = \gamma_0$$

Special Case: Symmetric Lattice

Often, we only need a single transfer function and can use the symmetric lattice



The procedures for TF \rightarrow lattice and lattice \rightarrow TF are similar to what we've covered. Also see Matlab functions tf2latc and latc2tf.