ECE503 Spring 2014 Quiz 5

Your Name: ________________________ ECE Box Number: ________

Instructions: This quiz is worth a total of 100 points. The quiz is open book and open notes. You may also use a calculator. You may not use a computer, phone, or tablet. Please show your work on each problem and box/circle your final answers. Points may be deducted for a disorderly presentation of your solution.

1. 50 points total. Suppose you have a continuous-time signal \(x_c(t) \) applied to the input of the system shown in Fig. 1 with ideal continuous/discrete and discrete/continuous blocks. Note that the sampling period of the C/D block is \(T \) whereas the sampling period of the D/C block is \(MT \) for integer \(M \geq 1 \). Further suppose the anti-aliasing filter \(H_a(j\Omega) \) is a zero-phase filter with magnitude response shown in Fig. 2 with \(\Omega_1 = 2\pi \cdot 5000 \) and \(\Omega_2 = 2\pi \cdot 19000 \) (the figure is not to scale).

\[
\begin{align*}
x_c(t) & \quad \xrightarrow{H_a(j\Omega)} \quad \xrightarrow{C/D} \quad \xrightarrow{H(e^{jw})} \quad \xrightarrow{\downarrow M} \quad \xrightarrow{D/C} \quad y(t)
\end{align*}
\]

\(T \) \hspace{2cm} \(MT \)

Figure 1: System for processing \(x_c(t) \).

\[
\begin{align*}
H_a(j\Omega)
\end{align*}
\]

\(\Omega_1 \) \hspace{2cm} \(\Omega_2 \)

Figure 2: Anti-aliasing filter spectrum.

We desire the overall system from \(x_c(t) \) to \(y(t) \) to be an ideal lowpass filter with cutoff frequency \(\Omega_c = 2\pi \cdot 4000 \).

(a) 20 points. What is the minimum sampling frequency \(f_s = \frac{1}{T} \) that can be used to achieve the desired overall response for any input? Explain.

(b) 30 points. Suppose \(f_s = 100 \text{ kHz} \). Specify discrete-time system \(H(e^{jw}) \) that achieves the desired overall response. What is the maximum value of \(M \) that can be used without affecting the desired overall response? Explain.
2. 50 points. Consider an oversampled ADC with noise shaping, modeled as shown in Fig. 3. The oversampled discrete-time signal $x[n]$ is assumed to be zero mean and stationary with variance σ_x^2. The discrete-time quantization noise $e[n]$ is assumed to be zero mean, white, stationary with variance σ_e^2, and uncorrelated with $x[n]$. The input to the system is also assumed to be band limited to Ω_N so that the output of the overall system can be written as

$$x_d[n] = x[n] + f[n]$$

where $f[n]$ is the quantization noise at the output of the system. Suppose the system that shapes the noise ($H(z)$) has magnitude response as shown in Fig. 4. Determine the signal to quantization noise ratio (SQNR) at the output of this system as a function of σ_e^2, σ_x^2, and M. Compare your result to the SQNR of conventional noise shaping with $H(z) = 1 - z^{-1}$.

![Diagram](image)

Figure 3: Oversampled ADC with noise shaping (from O & S textbook).

![Diagram](image)

Figure 4: Magnitude response of noise shaping filter.
1. a) Suppose \(x(t) \) is a white noise signal. After sampling, we have \(X(e^{j\omega}) \)

\[
\frac{1}{T}
\]

\(2\pi \cdot 4000T \)

\(2\pi \cdot 5000T \quad 2\pi \cdot 19000T \)

This point is \(2\pi - 2\pi \cdot 19000T \)

We need \(2\pi - 2\pi \cdot 19000T \geq 2\pi \cdot 4000T \) to avoid aliasing into the passband of our overall filter.

\[
I \geq 23000T
\]

So \(f_s \geq 23000 \) or \(T \leq \frac{1}{23000} \)

b) If \(f_s = 100 \text{ kHz} \) then after sampling we have \(X(e^{j\omega}) \)

\[
\frac{1}{T}
\]

\[-2\pi \quad 2\pi \]

We can apply an ideal DT lowpass filter here with cutoff \(\omega_c = \frac{2\pi \cdot 4}{100} \)

and the output of this filter will be

When we down sample, to avoid aliasing, we need

\[
2\pi \cdot \frac{4}{100} \cdot M \leq 2\pi - 2\pi \cdot \frac{4M}{100}
\]

\[
\frac{M}{25} \leq 1 - \frac{M}{25} \Rightarrow \frac{2M}{25} \leq 1 \Rightarrow M \leq 12
\]
2. First look at the PSD of $\hat{e}[n]$

$$P_{\hat{e}\hat{e}}(e^{jw}) = |H(e^{jw})|^2 P_{\hat{e}}(e^{jw})$$

For $-\pi \leq w \leq \pi$, we have $|H(e^{jw})| = \frac{10 \cdot |w|}{\pi}$

so

$$P_{\hat{e}\hat{e}}(e^{jw}) = \sigma_e^2 \cdot \frac{100 \cdot w^2}{\pi^2}$$

Now, when we pass this through the LPF, the quantization noise power at the output of the LPF is:

$$\sigma_v^2 = \frac{1}{2\pi} \int_{-\pi/4}^{\pi/4} \sigma_e^2 \cdot \frac{100 \cdot w^2}{\pi^2} \, dw = \frac{1}{2\pi} \cdot \sigma_e^2 \cdot \frac{100}{\pi^2} \int_{-\pi/4}^{\pi/4} w^2 \, dw$$

$$= \frac{50 \sigma_e^2}{\pi^3} \cdot \frac{2 \cdot \omega^3}{3} \Big|_{0}^{\pi/4} = \frac{50 \sigma_e^2}{\pi^3} \cdot \frac{2}{3} \cdot \frac{\pi^3}{M^3}$$

$$= \frac{100 \sigma_e^2}{3M^3} \approx 33.3 \frac{\sigma_e^2}{M^3}$$

The downsample doesn't change the power, so $\sigma_p^2 \approx \sigma_v^2$ and we have

$$SQNR = 10 \log_{10} \left(\frac{\sigma_x^2}{\sigma_p^2} \right) = 10 \log_{10} \left(\frac{\sigma_x^2 \cdot 3M^3}{100 \cdot \sigma_e^2} \right)$$

$$= 10 \log_{10} \left(\frac{3 \sigma_x^2}{100 \sigma_e^2} \right) + 30 \log_{10} (M)$$

As was the case with the usual noise shaping $H(z)=1-z^{-1}$, we have a $30 \log_{10} (M)$ term. The quantization noise variance in that case, however, was

$$\sigma_v^2 = \frac{2 \pi^2}{6M^3} \cdot \sigma_e^2 \approx 3.3 \frac{\sigma_e^2}{M^3}$$

which is ≈ 10 times better than the system considered here.