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Lecture 9 Major Topics

We are still in Part II of ECE504: Quantitative and qualitative

analysis of systems

mathematical description → results about behavior of system

Today, we will cover:
◮ External stability of LTI systems
◮ A “new” way to compute exp{tA} and Ak for LTI systems.
◮ Reachability of DT systems
◮ Controllability of DT systems
◮ Observability of DT systems
◮ The Cayley-Hamilton theorem.

You should be reading Chen Chapters 5 and 6 now. Sections 5.1-5.2,
and 5.5 all discuss external stability. Sections 6.1-6.3 discuss
controllability and observability.
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Internal Versus External Stability

Recall that there are two types of stability that we can discuss when
we use state-space descriptions of dynamic systems:

1. Internal stability (are the states blowing up?)

2. External stability (is the output blowing up?)

In our example CT-LTI system,

ẋ(t) =





−1 0 0
0 1 0
0 0 1



x(t) +





1
0
0



u(t)

y(t) =
[

1 1 −1
]

x(t) +
[

0
]

u(t)

we saw a system that was externally stable, but not internally stable.
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Bounded Input – Bounded Output (BIBO) Stability

Definition

A continuous-time system is BIBO stable if, for every input satisfying

|u(t)| ≤ Mu

for all t ∈ R and some 0 ≤ Mu < ∞, the output satisfies

|y(t)| ≤ My

for all t ∈ R and some 0 ≤ My < ∞.

Any bounded input causes the system to produce a bounded output.

Note that this definition is for SISO systems, but can easily be extended to
MIMO systems using our notion of bounded vectors from Lecture 8.
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CT-LTI Systems: First Criterion for BIBO Stability

Theorem (Chen Theorem 5.1)

A CT-LTI system with impulse response g(t) is BIBO stable if and only if

∫

∞

−∞

|g(t)| dt < ∞.

In other words, the impulse response of the system must be “absolutely
integrable” for the system to be BIBO stable. The converse is also true.

Intuitive examples:

g(t) =

{

0 t < 0

e−t t ≥ 0
g(t) =

{

0 t < 0

1 t ≥ 0
g(t) =

{

0 t < 0

sin(t) t ≥ 0
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Proof of the First Criterion for BIBO Stability
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CT-LTI Systems: Second Criterion for BIBO Stability

Theorem (Chen Theorem 5.3)

A CT-LTI system is BIBO stable if and only if all of the poles of its proper
rational transfer function ĝ(s) have negative real parts.

Recall that a proper rational transfer function is one in which the degree of
the denominator is equal to or larger than the degree of the numerator.

Intuitive example: Suppose we had a system with transfer function:

ĝ(s) =
1

s2 + 1

Is this transfer function rational and proper? Is this system BIBO stable?

Why can’t this system be BIBO stable? Hint: Is there a bounded input
that causes the output of this system to “blow up”?
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CT-LTI Systems: Third Criterion for BIBO Stability

Theorem

Given a CT-LTI system described by the matrices A, B, C, and D, then
the following facts are true:

1. If A is Hurwitz, then the system is BIBO stable.

2. If the system is BIBO stable and A, B, C, and D is a minimal

realization, then A is Hurwitz.

Minimal realization (intuitive definition): The transfer function ĝ(s)
corresponding to the state space system described by the matrices A, B,
C, and D has no pole/zero cancellations.

1. Is every pole of the transfer function ĝ(s) an eigenvalue of A?

2. Is every eigenvalue of A a pole of the transfer function ĝ(s)?

3. If A, B, C, and D is a minimal realization, is every eigenvalue of A

a pole of the transfer function ĝ(s)?
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CT-LTI Systems: Third Criterion for BIBO Stability

Proof sketch:

The proof of Fact 1 follows directly from the fact that every pole of the
transfer function ĝ(s) an eigenvalue of A and the Second Criterion for
BIBO Stability.

The proof of Fact 2 follows directly from the fact that, if A, B, C, and D

is a minimal realization, then every eigenvalue of A a pole of the transfer
function ĝ(s) (and the Second Criterion for BIBO Stability).
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Impulse Response from the CT-LTI SS Description

Recall that

y(t) = Cx(t) + Du(t)

When x(0) = 0, the solution to the CT-LTI differential state equation is
(see Chen Chap 4 or your lecture notes):

x(t) =

∫ t

0

exp{(t − τ)A}Bu(τ) dτ.

Hence, the zero-state response of a CT-LTI system can be computed from
the state-space description as

y(t) =

∫ t

0

C exp{(t − τ)A}Bu(τ) dτ + Du(t)

What is the impulse response of the system?
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A “New” Way to Compute exp{tA}

We know that, for a CT-LTI system, the transfer function

ĝ(s) = C(sIn − A)−1B + D

We also know that

ĝ(s) = L [g(t)]

= L [C exp{tA}BI(t) + Dδ(t)]

which implies that

exp{tA} = L−1
[

(sIn − A)−1
]

Example....

Worcester Polytechnic Institute D. Richard Brown III 04-Nov-2008 11 / 38



ECE504: Lecture 9

Bounded Input – Bounded Output (BIBO) Stability

Definition

A discrete-time system is BIBO stable if, for every input satisfying

|u[k]| ≤ Mu

for all k ∈ Z and some 0 ≤ Mu < ∞, the output satisfies

|y[k]| ≤ My

for all k ∈ Z and some 0 ≤ My < ∞.

Essentially the same definition as for continuous-time systems.
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DT-LTI Systems: First/Second Criteria for BIBO Stability

Theorem

A DT-LTI system with impulse response g[k] is BIBO stable if and only if

∞
∑

k=−∞

|g[k]| dt < ∞.

In other words, the impulse response of the system must be “absolutely
summable” for the system to be BIBO stable. The converse is also true.

Theorem

A DT-LTI system is BIBO stable if and only if all of the poles of its proper
rational transfer function ĝ(z) have magnitude less than one.
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DT-LTI Systems: Third Criterion for BIBO Stability

Theorem

Given a DT-LTI system described by the matrices A, B, C, and D, then
the following facts are true:

1. If A is Schur, then the system is BIBO stable.

2. If the system is BIBO stable and A, B, C, and D is a minimal

realization, then A is Schur.

Intuition and proof are essentially the same as the CT-LTI case.
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Impulse Response from the DT-LTI SS Description

Recall that

y[k] = Cx[k] + Du[k]

When x[0] = 0, the solution to the DT-LTI differential state equation is

x[k] =

k−1
∑

ℓ=0

Ak−ℓ−1Bu[ℓ]

Hence, the zero-state response of a DT-LTI system can be computed from
the state-space description as

y[k] =
k−1
∑

ℓ=0

CAk−ℓ−1Bu[ℓ] + Du[k]

What is the impulse response of the system?
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A “New” Way to Compute Ak

We know that, for a DT-LTI system, the transfer function

ĝ(z) = C(zIn − A)−1B + D

We also know that

ĝ(z) = Z [g[k]]

= Z
[

CAk−1BI[k] + Dδ[k]
]

which implies that

Ak−1 = Z−1
[

(zIn − A)−1
]

Example....
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Reachability, Controllability, and Observability

Recall our intuitive concept of the CT “state” x(t0): everything you
need to know about the system at time t = t0 to compute the
outputs y(t) for all t ≥ t0 given the inputs u(t) for all t ≥ t0.

The same concept applies to DT systems.

In many real systems, the number of states tends to be much larger
than the number of inputs and the number of outputs.

Intuitively, this suggests that

◮ You can’t do much to the state x by manipulating the input u

◮ You can’t determine much about the state x by observing the
output y

But is this intuition true?
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Reachability, Controllability, and Observability

A quick example:

ẋ(t) =

[

1 0
0 −1

]

x(t) +

[

0
1

]

u(t)

Review question: Given the initial state x(0) and the input u(t) for all
t ≥ t0, what is x(t)?

What influence does u(t) have on the state x1(t)?

What influence does u(t) have on the state x2(t)?

Now suppose C = [0 1], i.e. y(t) = x2(t). What does the output tell us
about the state x1(t)? Is this true for any A?
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Reachable States (DT Systems)

Definition

The state x̄ ∈ R
n is a reachable state if there exists kr > 0 and an input

sequence {u[0], u[1], . . . , u[kr − 1]} such that x(kr) = x̄ when x[0] = 0

and when you apply the chosen input sequence {u[0], u[1], . . . , u[kr − 1]}.

x1

x2

input drives state from

origin to x in !nite time

(x[0] = 0)

x̄
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Reachability Matrix for DT-LTI Systems

Definition

Given a DT-LTI system described by the matrices A, B, C, and D, the
reachability matrix of this system is the matrix

Qr = [B AB · · · An−1B]

What are the dimensions of Qr if we have a DT-LTI system with p inputs?
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Reachability Theorem for DT-LTI Systems

Theorem

x̄ is a reachable state if and only if x̄ ∈ range(Qr).

Example:

A =

[

1 1
1 1

]

and B =

[

1
1

]

Is x̄ = [1, 0]⊤ reachable? How about x̄ = [9, 9]⊤?

To prove the reachability theorem, we are going to need to take a brief
detour and learn an important linear algebra result...
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Detour: The Cayley-Hamilton Theorem

Theorem

Given A ∈ R
n×n, suppose that

det(λIn − A) = (λ − λ1)
r1(λ − λ2)

r2 · · · (λ − λs)
rs

= λn + a1λ
n−1 + · · · + an.

Then the matrix A satisfies its own characteristic polynomial in the
sense that

An + a1A
n−1 + · · · + anIn = 0n×n

or, equivalently,

(A − λ1In)r1(A − λ2In)r2 · · · (A − λsIn)rs = 0n×n.
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An Example of the Cayley-Hamilton Theorem

A =





1 0 3
0 1 3
0 0 2




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Cayley-Hamilton Theorem Proof Sketch
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Proof of the Reachability Theorem for DT-LTI Systems
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Remarks on the Reachability Theorem

Interesting consequence: The reachability definition requires that we
drive the state from the origin to x̄ in a finite number of steps. The
reachability theorem implies that we can always drive the state from 0 to
x̄ ∈ range(Qr) in n steps (or less).

Fact: The set of reachable states is equal to range(Qr) and is a subspace
of R

n.

Definition

An LTI system with range(Qr) = R
n, i.e. all states are reachable, is called

a “reachable” system.
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Extensions of the Reachability Theorem

Theorem

The set of reachable states range(Qr) is invariant under A, i.e. if
x ∈ range(Qr) then Ax ∈ range(Qr).

The proof is a consequence of the Cayley-Hamilton theorem.

Theorem

If range(Qr) = R
n (all states are reachable states) for a SS description

with matrices A, B, C, and D, then range(Qr) = R
n for a SS description

with matrices P AP−1, P B, CP−1, and D for any invertible P ∈ R
n×n.

The proof can be found in Chen Theorem 6.2 (Chen discusses
“controllability”, rather than reachability, but the proof steps are identical).
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DT-LTI Reachability Example
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Controllability (DT systems)

Definition

The state x̄ ∈ R
n is a controllable state if there exists kr > 0 and an

input sequence {u[0], u[1], . . . , u[kr − 1]} such that x(kr) = 0 when
x[0] = x̄ and when you apply the chosen input sequence
{u[0], u[1], . . . , u[kr − 1]}.

x1

x2

input drives state from

 x to origin in !nite time

(x[0] = x)
x̄
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Controllability vs. Reachability for DT-LTI Systems

Theorem

The set of reachable states is a subset of the set of controllable states for
DT-LTI systems.

To see that this must be true, we will show that if x̄ is a reachable state,
thenit must also be a controllable state...

DT-LTI example of a case when the set of reachable states is not equal to
the set of controllable states:

A =

[

0 1
0 0

]

and B =

[

1
0

]
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Remarks on Controllability for DT-LTI Systems

Fact: The set of controllable states is a subspace of R
n.

Theorem

The set of controllable states is invariant under A, i.e. if x is in the set of
controllable states, then so is Ax.

Definition

An LTI system with the set of controllable states equal to R
n, i.e. all

states are controllable, is called a “controllable” system.

It turns out that, like reachable states, if x̄ is a controllable state, then you
can always find an input sequence {u[0], . . . , u[n − 1]} that drives the
state from x[0] = x̄ to the origin in n or fewer steps.
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Chen’s Definition of Controllable DT-LTI Systems

Note: Chen’s definition of a controllable system is a system that can be
driven from any initial state x̄ to any final state x̃ in finite time.

x1

x2

input drives state from

any initial state to 

any !nal state

 in !nite time

x̄ x̃

Is Chen’s definition of a controllable system equivalent to our definition of
a reachable system, our definition of a controllable system, or neither?
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Summary: Reachability/Controllability for DT-LTI Systems

◮ Reachability: Drive state from 0 to x̄.

x1

x2

input drives state from

origin to x in !nite time

(x[0] = 0)

x̄

◮ Controllability: Drive state from x̄ to 0.

x1

x2

input drives state from

 x to origin in !nite time

(x[0] = x)
x̄

◮ {reachable states} = range([B AB · · ·An−1B]) = range(Qr).
◮ {reachable states} ⊆ {controllable states}.
◮ Systems with more states typically take more time to control.
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Observability for DT-LTI Systems

Definition

The state x̄ ∈ R
n is an unobservable state if, for any choice of input

sequence {u[0], u[1], . . . }, the output sequence {y[0], y[1], . . . } given
initial x[0] = x̄ is the same as the output sequence given initial x[0] = 0.

Intuition:

◮ You want to determine the initial state of the system x[0].

◮ You are allowed to apply any input you want to the system and
measure the resulting output.

◮ The state x[0] = x̄ is called “unobservable” if you are unable to
distinguish it from the initital state x[0] = 0.
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Observability for DT-LTI Systems

Given x[0] = x̄, the output of a DT-LTI system is

y[k] = CAkx̄ +

k−1
∑

ℓ=0

CAk−ℓ−1Bu[ℓ] + Du[k]

Given x[0] = 0, the output of a DT-LTI system is

y[k] = 0 +

k−1
∑

ℓ=0

CAk−ℓ−1Bu[ℓ] + Du[k]

Hence, for these to be equal, we must have

CAkx̄ = 0 ∀k ≥ 0

This condition is equivalent to the statement that “x̄ is unobservable”.
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Observability Matrix for DT-LTI Systems

Definition

Given a DT-LTI SS system described by the matrices A, B, C, and D,
the observability matrix of the system is defined as

Qo =











C

CA
...

CAn−1











What are the dimensions of Qo if we have a system with q outputs?
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Observability Theorem for DT-LTI Systems

Theorem

x̄ is an unobservable state if and only if x̄ ∈ null(Qo).

Proof...

Definition

A DT-LTI system is observable if no x̄ 6= 0 is an unobservable state.

In other words, a DT-LTI system is observable if dim(null(Qo)) = 0 or,
equivalently, if rank(Qo) = n.

Some possibly useful facts:
◮ The set of unobservable states is a subspace of R

n.
◮ This subspace is invariant under A, i.e. if x̄ is in the set of

unobservable states, then so is Ax.
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Conclusions

Today we covered:

◮ BIBO stability for CT and DT systems with theorems for LTI
systems.

◮ Reachability for DT systems.

◮ Controllability for DT systems.

◮ Observability for DT systems.

◮ Lots of theorems and definitions for DT-LTI systems.

Next time:

◮ Reachability, controllability, and observability for CT systems.

◮ Theorems and definitions for CT-LTI systems.

◮ Realization theory (Chen Chap 7).
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