
ECE531 Homework Assignment Number 1 Solution

1. 4 points. You are given an urn containing one ball, known to be either black or white with
equal probability. You drop in a white ball, shake the urn, and remove a white ball. What is
the probability that the ball remaining in the urn is white?

Solution: This problem is exactly the same as the coin flipping problem discussed in lecture.
After you drop a white ball in the urn, the two unknown states of nature are WW (two
white balls in the urn) and WB (one white and one black ball in the urn). The conditional
probabilities of removing a white or black ball are then

Prob[W |WW ] = 1

Prob[B |WW ] = 0

Prob[W |WB] = 0.5

Prob[B |WB] = 0.5

You want to determine the probability that the ball remaining in the urn is white given that
you removed a white ball, which is equivalent to the probability that the state of nature is
WW given that you removed a white ball, i.e. Prob[WW |W ]. You can just use the standard
conditional probability expressions given in lecture to compute

Prob[WW |W ] =
Prob[WW,W ]

Prob[W ]
=

Prob[W |WW ]Prob[WW ]

Prob[W ]

where Prob[WW ] = 0.5 is the unconditional probability that the state of nature is WW and
Prob[W ] = Prob[W |WW ]Prob[WW ] + Prob[W |WB]Prob[WB] = 1 · 0.5 + 0.5 · 0.5 = 0.75
is the unconditional probability that you remove a white ball (and where we have used the
total probability theorem). Plugging it all in, we get the desired result

Prob[WW |W ] =
1 · 0.5
0.75

=
2

3
.

2. 4 points. A passenger next to you on an airplane (whom you never previously met) tells you
she has two children. What is the probability that they are both girls if she says “yes” to

(a) Is at least one of them a girl?

(b) Is the older one a girl?

Solution: The implicit assumption here is that girls and boys are born with equal probability
(and that both children can not be born simultaneously, of course). There are a total of four
possible states of nature here: GG, GB, BG, BB, where the leftmost letter corresponds to the
older of the two children. Each state of nature has the same probability, i.e. 0.25. Hence, for
part (a), the probability that both are girls given that at least one is a girl can be computed
as

Prob[GG | at least one girl] =
Prob[GG, at least one girl]

Prob[at least one girl]
=

0.25

0.75
=

1

3

1



where Prob[GG, at least one girl] = Prob[GG] = 0.25 since the event GG is contained en-
tirely in the event “at least one girl”, and Prob[at least one girl] = Prob[GG] + Prob[GB] +
Prob[BG] = 0.75 since those events are mutually exclusive.

For part (b), the probability that both are girls given that the older one is a girl can be
computed as

Prob[GG | older one is a girl] =
Prob[GG, older one is a girl]

Prob[older one is a girl]
=

0.25

0.5
=

1

2

with similar reasoning as part (a).

3. 4 points. Suppose you have a wired communication system where the transmitter puts +1Vdc
on the communication circuit if a binary one is transmitted and puts -1Vdc on the circuit if a
binary zero is transmitted. Binary ones are transmitted with probability p and binary zeros
are transmitted with probability 1− p. The receiver forms its scalar observation by sampling
the voltage in the circuit.

The signal at the receiver is corrupted by noise. The sampled voltage at the receiver can be
modeled as a random variable Y = V + W where V ∈ {−1,+1} is the voltage applied to the
circuit by the transmitter and W ∈ R is a Gaussian random variable with zero mean and a
standard deviation of 0.3 volts.

(a) Plot the posterior probability that the transmitter sent +1Vdc as a function of the prior
probability p given an observation of Y = 0.1Vdc.

(b) Plot the posterior probability that the transmitter sent -1Vdc as a function of the prior
probability p given an observation of Y = 0.1Vdc.

Solution: Let A be the event that the transmitter sent +1Vdc (binary one) and let y =
0.1Vdc. In part (a), we want to compute

Prob[A |Y = y] =
pY (y |A)Prob[A]

pY (y)
=

pY (y |A) · p
pY (y)

where we have used the appropriate form of Bayes’ rule for random variables and events.
The conditional pdf pY (y |A) is simply the pdf of the sampled voltage conditioned on the
event that the transmitter sent +1Vdc (binary one). In other words, Y = 1 + W and all that
happens here is that Y will have the same pdf as W except with mean of one, i.e.,

pY (y |A) =
1√
2πσ

exp

{−(y − 1)2

2σ2

}

where σ = 0.3 is the standard deviation of the noise. The unconditional pdf pY (y) can be
written as

pY (y) = p
1√
2πσ

exp

{−(y − 1)2

2σ2

}

+ (1 − p)
1√
2πσ

exp

{−(y + 1)2

2σ2

}

where we have used the fact that Y = X + W and that the pdf of Y will be equal to the
convolution of the pdfs of X and W . So, plugging in y = 0.1 and σ = 0.3, we can generate
the following plot (where we have also used the fact that Pr[Ā |Y = y] = 1 − Pr[A |Y = y].
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4. 8 points. Two random variables X and Y have the joint probability density function

pX,Y (x, y) =

{

c(x − y)2 −1 ≤ x ≤ 1 and − 1 ≤ y ≤ 1

0 otherwise.

(a) Find the appropriate value for c. Solution: This can be found by performing the double
integral, setting the result equal to one, and solving for c. Skipping the calculus details,
the correct answer is c = 3

8
.

(b) Compute the joint probability Prob[X > 0, Y > 0]. Solution: This can be found by
performing the double integral over the range 0 < x ≤ 1 and 0 < y ≤ 1 (with the
value of c from part (a). Skipping the calculus details again, the correct answer is
Prob[X > 0, Y > 0] = 1

16
.

(c) Compute the conditional distribution pX(x | y). Solution: This can be found by using
the appropriate form of Bayes’ rule, i.e.

pX(x | y) =
pX,Y (x, y)

pY (y)

where the joint probability is given and you just need the marginal. The marginal can



be computed to be

pY (y) =
3y2 + 1

4

hence

pX(x | y) =
3

2
· (x − y)2

3y2 + 1
.

You should confirm that this is indeed a valid pdf (that it integrates to 1 for any value
of y and that it is non-negative).

(d) Compute the conditional expectation E[X | y]. Solution: The conditional expectation
can be computed from your result in part (c) as

E[X | y] =

∫

1

−1

xpX(x | y) dx =
−2y

3y2 + 1

where y is known (we’ve conditioned on it). You can see here how knowledge that Y = y
affects the mean of X because X and Y are not independent.

(e) Compute the conditional probability Prob[X > 0 |Y ≤ 0]. Solution: This can be
computed as

Prob[X > 0 |Y ≤ 0] =
Prob[X > 0, Y ≤ 0]

Prob[Y ≤ 0]
=

7/16

0.5
=

7

8

where we know that Prob[Y ≤ 0] = 0.5 from the symmetry of the joint pdf.

(f) Compute the conditional probability Prob[X > 0 |Y > 0]. Solution: This can be
computed easily by using your result from part (b) and the same approach as in part
(e). We can write

Prob[X > 0 |Y > 0] =
Prob[X > 0, Y > 0]

Prob[Y > 0]
=

1/16

0.5
=

1

8

where we know that Prob[Y > 0] = 0.5 from the symmetry of the joint pdf.

(g) What do parts (e) and (f) imply about the unconditional probability Prob[X > 0]?
Explain. Solution: The total probability theorem can be used here to write

Prob[X > 0] = Prob[X > 0 |Y ≤ 0]Prob[Y ≤ 0] + Prob[X > 0 |Y > 0]Prob[Y > 0].

From the symmetry of the joint pdf, we know that Prob[Y ≤ 0] = Prob[Y > 0] = 0.5,
hence

Prob[X > 0] =
7

8
· 1

2
+

1

8
· 1

2
=

1

2

as you would expect from the symmetry of the pdf for both X and Y .


