ECE531 Homework Assignment Number 2

Due by 8:50pm on Thursday 05-Feb-2009

Make sure your reasoning and work are clear to receive full credit for each problem.

1. 3 points. A city has two taxi companies distinguished by the color of their taxis: 85% of the
taxis are Yellow and the rest are Blue. A taxi was involved in a hit and run accident and
was witnessed by Mr. Green. Unfortunately, Mr. Green is mildly color blind and can only
correctly identify the color 80% of the time. In the trial, Mr. Green testified that the color
of the taxi was blue. Should you trust him?

Solution: This problem can be interpreted as: Does Mr. Green’s decision minimizes the
Bayesian risk? Let’s assume a uniform cost assignment (UCA) and use xg and H to represent
“Yellow” and z1 and H; to represent “Blue”. Also let mg = 0.85 denote the prior probability
of a yellow taxi, m; = 0.15 denote the prior probability of a blue taxi, and Y = y; denote
Mr. Green’s observation of a blue taxi. Then from slide 26 in Lecture 2b, a deterministic
Bayes decision rule can be written in terms of the posterior probabilities as

357 (y) = arg max ™ (y),
1€{0,1} =il

where 7;(y) = Prob(state is x; | observation is y). Given Mr. Green’s observation ¥ = y;
(the taxi was blue), then if 71(y1) > mo(y1) the posterior probability of the taxi being blue
is greater than the posterior probability of the taxi being yellow and we can trust Mr.Green.
We can write the posterior probabilities

~ pi(yy)m
m) =0y
_po(yl)WO
moly) = plyr)

Thus we only need to compare ko = po(y1)m and k1 = p1(y1)71 -
ko = 0.2%0.85 =0.17

k1 =0.8%0.15 = 0.12

We see that kg > k1, hence the posterior probability of the taxi being yellow is greater than
the posterior probability of the taxi being blue and we can not trust Mr.Green.

2. 8 points total. Consider the coin flipping problem where you have an unknown coin, either
fair (HT) or double headed (HH), and you observe the outcome of n flips of this coin. Assume
a uniform cost assignment. For notational consistency, let the state and hypothesis z¢ and
Ho be the case when the coin is HT and x7 and H; be the case when the coin is HH.



(a) 3 points. Plot the conditional risk vectors (CRVs) of the deterministic decision rules for
coin flips. You might want to write a Matlab script to do
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the cases of n =1,2,3,4,...

this for n > 2.
Solution: See the Matlab script and plots below.
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% ECE531 Spring 2009
% DRB 05— Feb—2009
% Solution to Homework 2 Problem 2 part a

(V4
% USER PARAMETERS BELOW
o
ntest = 1:4; % values of n to test
(V4
N = 2; % number of hypotheses
M= 2; % number of states
pO_H = 0.5; % conditional probability of H given z0
pl-H = 1; % conditional probability of H given zl
C=10013; 1 0]; % UCA
for n = ntest
L = n+1; % number of possible observations
totD = M"L; % total number of decision matrices
B = makebinary (L,1);
% form conditional probability matriz
% columns are indexed by state
% rows are indexed by observation
PO = zeros(L,1);
Pl = zeros(L,1);
for i = 0:(L-1),
PO(i+1) = nchoosek(n,i) % p0O_.H"i % (1 — p0_H)" (n—1i);
P1(i4+1) = nchoosek(n,i) = pl.H"i % (1 — pl.H) (n—i);
end
P = [P0 P1];
% compute CRVs for all possible deterministic decision matrices
for i = 0:(totD—-1),
D= [ B(:,i+1)" ; 1-B(:,i+1)" ]; % decision matriz
% compute Tisk wvectors
for j=0:1,
R(j+1,i41) = C(:,j+1)«DeP (s, j+1);
end
end
figure
plot (R(1,:) ,R(2,:),’p");
xlabel('R0O’)
ylabel('R1’)
title ([ 'n=" num2str(n)]);
axis square
grid on
end

Here is the function “makebinary.m” that is called by the main code.

function y=makebinary (K, unipolar)
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y=zeros (K,2"°K); % all possible bit combos
for index=1:K,
y(K—index+1,:)=(—1)."ceil ([1:2"K]/(2" (index —1)));
end
if unipolar >0,
y = (y+1)/2;
end

Here are the plots.
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2 points. What can you say about the convex hull of the deterministic CRVs as n
increases?

Solution: You can see the trend from the plots of how the CRVs of the deterministic
decision rules move closer to the bottom left corner as n increases. The convex hull of
achievable CRVs then fills more of the risk plane as n gets larger. Hence, you can achieve
any arbitrarily small risk combination for sufficiently large n.

3 points. When n = 2, find the deterministic decision rule(s) that minimize the Bayes
risk for the prior mg = 0.6 and 71 = 0.4. Repeat this for the case when n = 3. Does the
additional observation reduce the Bayes risk for this prior?

Solution: Notation: HT = zg « Hy and HH = 1 «» H;. When n=2, we can write the
conditional probability matrix P as

025 0
P=| 05 0
025 1

and the expected cost matrix G as

0 0 04
G_[0.15 0.3 0.15}

Hence the optimal deterministic decision matrix that minimizes the Bayes cost is

110
D‘[ooﬂ

and the resulting Bayes risk is r = 0.15.



When n=3, we can write the conditional probability matrix P as

0.125
0.375
0.375
0.125

_ o O O

and the expected cost matrix G as

a_| o 0 0 04
~ | 0075 0225 0.225 0.075

Hence the optimal deterministic decision matrix that minimizes the Bayes cost is

1110
D‘[oooﬂ

and the resulting Bayes risk is » = 0.075. The risk is reduced by flipping the coin one
more time, as you would expect.

3. 3 points. Poor textbook Chapter II. Problem 2 (a).
Solution: The likelihood ratio is given by

L(y):pl(y): i 0<y<lLl

poly) 2+1)" ~— 77

With uniform costs and equal priors, we can compute the optimum threshold on the likelihood
function as 7 = 1. From our expression for L(y), an equivalent condition to L(y) > 1 is
y € [0,0.5]. Thus, for priors my = m; = 0.5, the deterministic Bayes decision rule is given by

1 if0<y<05
B (y) =4 0/1 ify=0.5
0 if05<y<l1

The corresponding minimum Bayes risk for this prior is

052 ! 11
r(657) = 0.5/ —(y+1)dy+0.5 [ dy=—.
o 3 0.5 24

4. 3 points. Poor textbook Chapter II, Problem 4 (a).
Solution: Here the likelihood ratio is given by

2 2 2 _1)2
L) = W :\/iey_%z fe w2y
Po(y) & &

0

Let

T =
1—m

and note that L(y) = 7 is equivalent to y = 7’ where

7":—21n,/1 Y
2e 1—71'0 '




Hence, we can express the “critical region” of observations where we decide H; as
Ii={y>0|y-12*<7}.

There are three cases that depend on 7'

1] if7' <0
r={ 1-vPaevE] ifose <
0,1+\/F} if > 1

For notational convenience, let’s define the following constants:
/2¢
_vT
2
14/

2
8= \/; ~ 0.44379
1+4/2

~ 0.56813

o=

Then we can say that

e The condition 7/ < 0 is equivalent to o < mg < 1.
e The condition 0 < 7/ < 1 is equivalent to 8 < m < a.
e The condition 7" > 1 is equivalent to 0 < 7y < S3.

The minimum Bayes risk V() can be calculated according to these three regions:

1—mg ifa<m<1
/ -7 _? _? .
V(mg) = { ™o llj\\//—j e Ydy + (1 — mo) % [ 01 \/_e E dy + flo_iﬁe E dy| itp<m <«
7 2
™0 01+\/T_e_ydy+(1—770)\/gf1°jﬁe_y7dy fo<m <p

Note that these integrals can be expressed as Q-functions (or erf/erfc functions) but cannot
be evaluated in closed form for arbitrary priors.

. 3 points. Poor textbook Chapter II, Problem 6 (a).

Solution: Here we have po(y) = pn(y+ s) and p1(y) = pn(y — s), where py(z) is the pdf of
the random variable N. This gives the likelihood function

14+ (y+s9)?

L) = 1+ (y —s)

With equal priors and uniform costs, the “critical region” where we decide H; is I'y = {L(y) >
1}={1+(y+s)?*>14(y—s)*} ={2sy > —2sy} = [0,00). Thus, the Bayes decision rule

reduces to
Br _ 1 lfyZO
0 (y)_{ 0 ify<0

The minimum Bayes risk is then

By _ 1 [ 1 10 1 1 tanl(s)
(0 )_2/0 77[1+(y+s)2]dy+2/_ooﬂ[1+(y—s)2]dy_2 _—



