
ECE531 Homework Assignment Number 2

Due by 8:50pm on Thursday 05-Feb-2009

Make sure your reasoning and work are clear to receive full credit for each problem.

1. 3 points. A city has two taxi companies distinguished by the color of their taxis: 85% of the
taxis are Yellow and the rest are Blue. A taxi was involved in a hit and run accident and
was witnessed by Mr. Green. Unfortunately, Mr. Green is mildly color blind and can only
correctly identify the color 80% of the time. In the trial, Mr. Green testified that the color
of the taxi was blue. Should you trust him?

Solution: This problem can be interpreted as: Does Mr. Green’s decision minimizes the
Bayesian risk? Let’s assume a uniform cost assignment (UCA) and use x0 and H0 to represent
“Yellow” and x1 and H1 to represent “Blue”. Also let π0 = 0.85 denote the prior probability
of a yellow taxi, π1 = 0.15 denote the prior probability of a blue taxi, and Y = y1 denote
Mr. Green’s observation of a blue taxi. Then from slide 26 in Lecture 2b, a deterministic
Bayes decision rule can be written in terms of the posterior probabilities as

δBπ(y) = arg max
i∈{0,1}

∑

xj∈Hi

πj(y),

where πj(y) = Prob(state is xj | observation is y). Given Mr. Green’s observation Y = y1

(the taxi was blue), then if π1(y1) > π0(y1) the posterior probability of the taxi being blue
is greater than the posterior probability of the taxi being yellow and we can trust Mr.Green.
We can write the posterior probabilities

π1(y1) =
p1(y1)π1

p(y1)

π0(y1) =
p0(y1)π0

p(y1)
.

Thus we only need to compare κ0 = p0(y1)π0 and κ1 = p1(y1)π1 .

κ0 = 0.2 ∗ 0.85 = 0.17

κ1 = 0.8 ∗ 0.15 = 0.12

We see that κ0 > κ1, hence the posterior probability of the taxi being yellow is greater than
the posterior probability of the taxi being blue and we can not trust Mr.Green.

2. 8 points total. Consider the coin flipping problem where you have an unknown coin, either
fair (HT) or double headed (HH), and you observe the outcome of n flips of this coin. Assume
a uniform cost assignment. For notational consistency, let the state and hypothesis x0 and
H0 be the case when the coin is HT and x1 and H1 be the case when the coin is HH.
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(a) 3 points. Plot the conditional risk vectors (CRVs) of the deterministic decision rules for
the cases of n = 1, 2, 3, 4, . . . coin flips. You might want to write a Matlab script to do
this for n > 2.

Solution: See the Matlab script and plots below.

1 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

2 % ECE531 Spring 2009

3 % DRB 05−Feb−2009

4 % Solu t i on to Homework 2 Problem 2 par t a

5 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

6 % USER PARAMETERS BELOW

7 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

8 n t e s t = 1 : 4 ; % va l u e s o f n to t e s t

9 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

10
11 N = 2 ; % number o f hypo theses

12 M = 2 ; % number o f s t a t e s

13 p0 H = 0 . 5 ; % cond i t i ona l p r o b a b i l i t y o f H g i ven x0

14 p1 H = 1 ; % cond i t i ona l p r o b a b i l i t y o f H g i ven x1

15 C = [0 1 ; 1 0 ] ; % UCA

16
17 for n = nt e s t
18
19 L = n+1; % number o f p o s s i b l e o b s e r va t i on s

20 totD = MˆL ; % t o t a l number o f d e c i s i on matr ices

21 B = makebinary (L , 1 ) ;
22
23 % form cond i t i ona l p r o b a b i l i t y matrix

24 % columns are indexed by s t a t e

25 % rows are indexed by ob s e r va t i on

26 P0 = zeros (L , 1 ) ;
27 P1 = zeros (L , 1 ) ;
28 for i = 0 : ( L−1) ,
29 P0( i +1) = nchoosek (n , i ) ∗ p0 Hˆ i ∗ (1 − p0 H )ˆ( n−i ) ;
30 P1( i +1) = nchoosek (n , i ) ∗ p1 Hˆ i ∗ (1 − p1 H )ˆ( n−i ) ;
31 end

32 P = [P0 P1 ] ;
33
34 % compute CRVs f o r a l l p o s s i b l e d e t e rm i n i s t i c d e c i s i on matrices

35 for i = 0 : ( totD−1) ,
36 D = [ B( : , i +1) ’ ; 1−B( : , i +1) ’ ] ; % dec i s i on matrix

37 % compute r i s k v e c t o r s

38 for j =0:1 ,
39 R( j +1, i +1) = C( : , j +1) ’∗D∗P( : , j +1);
40 end

41 end

42
43 f igure

44 plot (R( 1 , : ) ,R( 2 , : ) , ’p ’ ) ;
45 xlabel ( ’R0 ’ )
46 ylabel ( ’R1 ’ )
47 t i t l e ( [ ’n= ’ num2str(n ) ] ) ;
48 axis square
49 grid on
50
51 end

Here is the function “makebinary.m” that is called by the main code.

1 function y=makebinary (K, un ipo la r )
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3 y=zeros (K,2ˆK) ; % a l l p o s s i b l e b i t combos

4 for index =1:K,
5 y (K−index +1 ,:)=(−1).ˆ ce i l ( [ 1 : 2 ˆK]/ ( 2ˆ ( index −1) ) ) ;
6 end

7 i f unipolar >0,
8 y = (y+1)/2;
9 end

Here are the plots.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R0

R
1

n=1



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R0

R
1

n=2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R0

R
1

n=3



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R0

R
1

n=4

(b) 2 points. What can you say about the convex hull of the deterministic CRVs as n
increases?

Solution: You can see the trend from the plots of how the CRVs of the deterministic
decision rules move closer to the bottom left corner as n increases. The convex hull of
achievable CRVs then fills more of the risk plane as n gets larger. Hence, you can achieve
any arbitrarily small risk combination for sufficiently large n.

(c) 3 points. When n = 2, find the deterministic decision rule(s) that minimize the Bayes
risk for the prior π0 = 0.6 and π1 = 0.4. Repeat this for the case when n = 3. Does the
additional observation reduce the Bayes risk for this prior?

Solution: Notation: HT = x0 ↔ H0 and HH = x1 ↔ H1. When n=2, we can write the
conditional probability matrix P as

P =





0.25 0
0.5 0
0.25 1





and the expected cost matrix G as

G =

[

0 0 0.4
0.15 0.3 0.15

]

Hence the optimal deterministic decision matrix that minimizes the Bayes cost is

D =

[

1 1 0
0 0 1

]

and the resulting Bayes risk is r = 0.15.



When n=3, we can write the conditional probability matrix P as

P =









0.125 0
0.375 0
0.375 0
0.125 1









and the expected cost matrix G as

G =

[

0 0 0 0.4
0.075 0.225 0.225 0.075

]

Hence the optimal deterministic decision matrix that minimizes the Bayes cost is

D =

[

1 1 1 0
0 0 0 1

]

and the resulting Bayes risk is r = 0.075. The risk is reduced by flipping the coin one
more time, as you would expect.

3. 3 points. Poor textbook Chapter II. Problem 2 (a).

Solution: The likelihood ratio is given by

L(y) =
p1(y)

p0(y)
=

3

2(y + 1)
, 0 ≤ y ≤ 1.

With uniform costs and equal priors, we can compute the optimum threshold on the likelihood
function as τ = 1. From our expression for L(y), an equivalent condition to L(y) ≥ 1 is
y ∈ [0, 0.5]. Thus, for priors π0 = π1 = 0.5, the deterministic Bayes decision rule is given by

δBπ(y) =







1 if 0 ≤ y < 0.5
0/1 if y = 0.5
0 if 0.5 < y ≤ 1

.

The corresponding minimum Bayes risk for this prior is

r(δBπ) = 0.5

∫

0.5

0

2

3
(y + 1)dy + 0.5

∫

1

0.5

dy =
11

24
.

4. 3 points. Poor textbook Chapter II, Problem 4 (a).

Solution: Here the likelihood ratio is given by

L(y) =
p1(y)

p0(y)
=

√

2

π
ey− y2

2 ≡
√

2e

π
e−

(y−1)2

2 , y ≥ 0.

Let
τ =

π0

1 − π0

and note that L(y) = τ is equivalent to y = τ ′ where

τ ′ = −2 ln

√

π

2e

(

π0

1 − π0

)

.



Hence, we can express the “critical region” of observations where we decide H1 as

Γ1 =
{

y ≥ 0
∣

∣(y − 1)2 ≤ τ ′} .

There are three cases that depend on τ ′:

Γ1 =















∅ if τ ′ < 0
[

1 −
√

τ ′, 1 +
√

τ ′
]

if 0 ≤ τ ′ ≤ 1
[

0, 1 +
√

τ ′
]

if τ ′ > 1

.

For notational convenience, let’s define the following constants:

α :=

√

2e
π

1 +
√

2e
π

≈ 0.56813

β :=

√

2

π

1 +
√

2

π

≈ 0.44379

Then we can say that

• The condition τ ′ < 0 is equivalent to α < π0 ≤ 1.

• The condition 0 ≤ τ ′ ≤ 1 is equivalent to β ≤ π0 ≤ α.

• The condition τ ′ > 1 is equivalent to 0 ≤ π0 < β.

The minimum Bayes risk V (π0) can be calculated according to these three regions:

V (π0) =



















1 − π0 if α < π0 ≤ 1

π0

∫

1+
√

τ ′

1−
√

τ ′
e−ydy + (1 − π0)

√

2

π

[

∫

1−
√

τ ′

0
e−

y2

2 dy +
∫ ∞
1+

√
τ ′ e

− y2

2 dy

]

if β ≤ π0 ≤ α

π0

∫

1+
√

τ ′

0
e−ydy + (1 − π0)

√

2

π

∫ ∞
1+

√
τ ′ e

− y2

2 dy if 0 ≤ π0 < β

Note that these integrals can be expressed as Q-functions (or erf/erfc functions) but cannot
be evaluated in closed form for arbitrary priors.

5. 3 points. Poor textbook Chapter II, Problem 6 (a).

Solution: Here we have p0(y) = pN (y + s) and p1(y) = pN (y − s), where pN (x) is the pdf of
the random variable N . This gives the likelihood function

L(y) =
1 + (y + s)2

1 + (y − s)2
.

With equal priors and uniform costs, the “critical region” where we decide H1 is Γ1 = {L(y) ≥
1} =

{

1 + (y + s)2 ≥ 1 + (y − s)2
}

= {2sy ≥ −2sy} = [0,∞). Thus, the Bayes decision rule
reduces to

δBπ(y) =

{

1 if y ≥ 0
0 if y < 0

The minimum Bayes risk is then

r(δBπ) =
1

2

∫ ∞

0

1

π [1 + (y + s)2]
dy +

1

2

∫

0

−∞

1

π [1 + (y − s)2]
dy =

1

2
− tan−1(s)

π
.


