Minimizing a Weighted Sum of Conditional Risks

We would like to minimize all of the conditional risks $R_0(D), \ldots, R_{N-1}(D)$, but we have to make some sort of tradeoff. A standard approach to solving a multi-objective optimization problem is to form a linear combination of the functions to be minimized:

$$r(D, \lambda) := \sum_{j=0}^{N-1} \lambda_j R_j(D) = \lambda^\top R(D)$$

where $\lambda_j \geq 0$ and $\sum_j \lambda_j = 1$.

The problem is then to solve the single-objective optimization problem:

$$D^* = \arg \min_{D \in \mathcal{D}} r(D, \lambda) = \arg \min_{D \in \mathcal{D}} \sum_{j=0}^{N-1} \lambda_j c_j^\top D p_j$$

where we are focusing on the case of finite \mathcal{Y} for now.
Minimizing a Weighted Sum of Conditional Risks

The problem

\[
D^* = \arg \min_{D \in \mathcal{D}} r(D, \lambda) = \arg \min_{D \in \mathcal{D}} \sum_{j=0}^{N-1} \lambda_j c_j^\top D p_j
\]

is a finite-dimensional linear programming problem since the variables that we control \((D_{ij})\) are constrained by linear inequalities

\[
D_{ij} \geq 0 \quad \forall i \in \{0, \ldots, M - 1\} \text{ and } j \in \{0, \ldots, L - 1\}
\]

\[
\sum_{i=0}^{M-1} D_{ij} = 1
\]

and the objective function \(r(D, \lambda)\) is linear in the variables \(D_{ij}\). For notational convenience, we call this minimization problem LPF(\(\lambda\)).
Decomposition: Part 1

Since

\[R_j(D) = c_j^\top D p_j = \sum_{i=0}^{M-1} C_{ij} \sum_{\ell=0}^{L-1} D_{i\ell} P_{\ell j} \]

the problem LPF(\(\lambda \)) can be written as

\[
D^* = \arg \min_{D \in \mathcal{D}} \sum_{j=0}^{N-1} \lambda_j \sum_{i=0}^{M-1} C_{ij} \sum_{\ell=0}^{L-1} D_{i\ell} P_{\ell j}
\]

\[
= \arg \min_{D \in \mathcal{D}} \sum_{\ell=0}^{L-1} \left(\sum_{i=0}^{M-1} D_{i\ell} \left[\sum_{j=0}^{N-1} \lambda_j C_{ij} P_{\ell j} \right] \right) r_{\ell}(d, \lambda)
\]

Note that we can minimize each term \(r_{\ell}(d, \lambda) \) separately.
The \(\ell\)th subproblem is then

\[
d^* = \arg \min_{d \in \mathbb{R}^M} r_\ell(d, \lambda)
\]

\[
= \arg \min_d \sum_{i=0}^{M-1} d_i \left[\sum_{j=0}^{N-1} \lambda_j C_{ij} P_{\ell j} \right]
\]

subject to the constraints that \(d_i \geq 0\) and \(\sum_i d_i = 1\).

- Note that \(d_i \leftrightarrow D_{i\ell}\) from the original LPF(\(\lambda\)) problem.
- For notational convenience, we call this subproblem LPF\(_\ell\)(\(\lambda\)).
Some Intuition: The Hiker

Suppose you are going on a hike with a one liter drinking bottle and you must completely fill the bottle before your hike. At the general store, you can fill your bottle with any combination of:

- Tap water: $0.25 per liter
- Ice tea: $0.50 per liter
- Soda: $1.00 per liter
- Red Bull: $5.00 per liter

You want to minimize your cost for the hike. What should you do?

We can define a per-liter cost vector

\[h = [0.25, 0.50, 1.00, 5.00]^\top \]

and a proportional purchase vector \(\nu \in \mathbb{R}^4 \) with elements satisfying \(\nu_i \geq 0 \) and \(\sum_i \nu_i = 1 \). Clearly, your cost \(h^\top \nu \) is minimized when \(\nu = [1, 0, 0, 0]^\top \).
Bayesian Hypothesis Testing

Solution to the Subproblem $\text{LPF}_\ell(\lambda)$

Theorem

For fixed $h \in \mathbb{R}^n$, the function $h^\top \nu$ is minimized over the set $\nu \in \{ \mathbb{R}^n : \nu_i \geq 0 \text{ and } \sum_i \nu_i = 1 \}$ by the vector ν^* with $\nu^*_m = 1$ and $\nu^*_k = 0$, $k \neq m$, where m is any index with $h_m = \min_{i \in \{0, \ldots, n-1\}} h_i$.

Note that, if two or more commodities have the same minimum price, the solution is not unique. Back to our subproblem $\text{LPF}_\ell(\lambda)$...

$$d^* = \arg \min_{d \in \mathbb{R}^M} \sum_{i=0}^{M-1} d_i \left[\sum_{j=0}^{N-1} \lambda_j C_{ij} P_{\ell_j} \right]$$

subject to the constraints that $d_i \geq 0$ and $\sum_i d_i = 1$. The Theorem tells us how to easily solve $\text{LPF}_\ell(\lambda)$. We just have to find the index

$$m_\ell = \arg \min_{i \in \{0, \ldots, M-1\}} \left[\sum_{j=0}^{N-1} \lambda_j C_{ij} P_{\ell_j} \right]$$

and then set $d_{m_\ell} = 1$ and $d_i = 0$ for all $i \neq m_\ell$.
Solving the subproblem $\text{LPF}_\ell(\lambda)$ for $\ell = 0, \ldots, L - 1$ and assembling the results of the subproblems into $M \times L$ decision matrices yields a non-empty, finite set of deterministic decision matrices that solve $\text{LPF}(\lambda)$.

All deterministic decision matrices in the set have the same minimal cost:

$$r^*(\lambda) = \sum_{\ell=0}^{L-1} \min_i \left\{ \sum_{j=0}^{N-1} \lambda_j C_{ij} P_{\ell j} \right\}$$

It is easy to show that any randomized decision rule in the convex hull of this set of deterministic decision matrices also achieves $r^*(\lambda)$, and hence is also optimal.
Example Part 1

Let $G_{i\ell} := \sum_{j=0}^{N-1} \lambda_j C_{ij} P_{\ell j}$ and $G \in \mathbb{R}^{M \times L}$ be the matrix composed of elements $G_{i\ell}$. Suppose

$$G = \begin{bmatrix}
0.3 & 0.5 & 0.2 & 0.8 \\
0.4 & 0.2 & 0.1 & 0.5 \\
0.5 & 0.1 & 0.7 & 0.6
\end{bmatrix}$$

- What is the solution to the subproblem $\text{LPF}_0(\lambda)$? $d = [1, 0, 0]^\top$.
- What is the solution to the problem $\text{LPF}(\lambda)$?

$$D = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 1 & 0 & 0
\end{bmatrix}$$

- Is this solution unique? Yes.
- What is $r^*(\lambda)$? $r^*(\lambda) = 1.0$.

Worcester Polytechnic Institute
D. Richard Brown III
26-January-2011
Example Part 2

What happens if

\[G = \begin{bmatrix} 0.3 & 0.5 & 0.2 & 0.8 \\ 0.4 & 0.2 & 0.2 & 0.5 \\ 0.5 & 0.1 & 0.7 & 0.6 \end{bmatrix} \]

The solution to LPF_2(λ) is no longer unique. Both

\[D = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix} \text{ or } D = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix} \]

solve LPF(λ) and achieve \(r^*(λ) = 1.1 \).

In fact, any decision matrix of the form

\[D = \begin{bmatrix} 1 & 0 & \alpha & 0 \\ 0 & 0 & 1 - \alpha & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix} \]

for \(\alpha \in [0, 1] \) will also achieve \(r^*(λ) = 1.1 \).
Remarks

- Note that the solution to the subproblem $\text{LPF}_\ell(\lambda)$ always yields at least one deterministic decision rule for the case $y = y_\ell$.
- If n_ℓ elements of the column G_ℓ are equal to the minimum of the column, then there are n_ℓ deterministic decision rules solving the subproblem $\text{LPF}_\ell(\lambda)$.
- There are $\prod \ell n_\ell \geq 1$ deterministic decision rules that solve $\text{LPF}(\lambda)$.
- If there is more than one deterministic solution to $\text{LPF}(\lambda)$ then there will also be a corresponding convex hull of randomized decision rules that also achieve $r^*(\lambda)$.
Bayesian Hypothesis Testing

Working Example: Effect of Changing the Weighting λ

Worcester Polytechnic Institute
D. Richard Brown III
26-January-2011
Weighted Risk Level Sets

Notice in the last example that, by varying our risk weighting λ, we can create a family of “level sets” that cover every point of the optimal tradeoff surface.

Given a constant $c \in \mathbb{R}$, the level set of value c is defined as

$$L_c^\lambda := \{ x \in \mathbb{R}^N : \lambda^\top x = c \}$$
When the observations are specified by conditional pdfs, our conditional risk function becomes

\[R_j(\rho) = \int_{y \in \mathcal{Y}} \left[\sum_{i=0}^{M-1} \rho_i(y) C_{ij} \right] p_j(y) \, dy \]

Recall that the randomized decision rule \(\rho_i(y) \) specifies the probability of deciding \(\mathcal{H}_i \) when the observation is \(y \).

We still have \(N < \infty \) states, so, as before, we can write a linear combination of the conditional risk functions as

\[r(\rho, \lambda) := \sum_{j=0}^{N-1} \lambda_j R_j(\rho) \]

where \(\lambda_j \geq 0 \) and \(\sum_j \lambda_j = 1 \).
The problem is then to solve

\[
\rho^* = \arg \min_{\rho \in \mathcal{D}} r(\rho, \lambda)
\]

\[
= \arg \min_{\rho \in \mathcal{D}} \sum_{j=0}^{N-1} \lambda_j \int_{y \in \mathcal{Y}} \left[\sum_{i=0}^{M-1} \rho_i(y) C_{ij} \right] p_j(y) \, dy
\]

where \(\mathcal{D} \) is the set of all valid decision rules satisfying \(\rho_i(y) \geq 0 \) for all \(i = 0, \ldots, M - 1 \) and \(y \in \mathcal{Y} \), as well as \(\sum_{i=0}^{M-1} \rho_i(y) = 1 \) for all \(y \in \mathcal{Y} \).

- This is an infinite dimensional linear programming problem.
- We refer to this problem as \(\text{LP}(\lambda) \).
Infinite Observation Spaces: Decomposition Part 1

As before, we can decompose the big problem $LP(\lambda)$ into lots of little subproblems, one for each observation $y \in \mathcal{Y}$. We rewrite $LP(\lambda)$ as

$$
\rho^* = \arg \min_{\rho \in \mathcal{D}} \sum_{j=0}^{N-1} \lambda_j \int_{y \in \mathcal{Y}} \left[\sum_{i=0}^{M-1} \rho_i(y) C_{ij} \right] p_j(y) \, dy
$$

and

$$
= \arg \min_{\rho \in \mathcal{D}} \int_{y \in \mathcal{Y}} \left(\sum_{i=0}^{M-1} \rho_i(y) \left[\sum_{j=0}^{N-1} \lambda_j C_{ij} p_j(y) \right] \right) \, dy
$$

to minimize the integral, we can minimize the term

$$
(\ldots) = \left(\sum_{i=0}^{M-1} \rho_i(y) \left[\sum_{j=0}^{N-1} \lambda_j C_{ij} p_j(y) \right] \right)
$$

at each fixed value of y.
The subproblem of minimizing the term \((\ldots)\) inside the integral when \(y = y_0\) is a finite-dimensional linear programming problem (since \(\mathcal{X}\) is still finite):

\[
\nu^* = \arg \min_{\nu} \sum_{i=0}^{M-1} \nu_i \left[\sum_{j=0}^{N-1} \lambda_j C_{ij} p_j(y_0) \right]
\]

subject to \(\nu_i \geq 0\) for all \(i = 0, \ldots, M - 1\) and \(\sum_{i=0}^{M-1} \nu_i = 1\).

We already know how to do this. We just find the index that has the lowest commodity cost

\[
m_{y_0} = \arg \min_{i \in \{0, \ldots, M-1\}} \sum_{j=0}^{N-1} \lambda_j C_{ij} p_j(y_0)
\]

and set \(\nu_{m_{y_0}} = 1\) and all other \(\nu_i = 0\). Same technique as solving \(\text{LPF}_\ell(\lambda)\).
Infinite Observation Spaces: Minimum Weighted Risk

As we saw with finite \mathcal{Y}, solving LP(λ) will yield at least one deterministic decision rule that achieves the minimum weighted risk

$$r^*(\lambda) = \int_{y \in \mathcal{Y}} \min_{i \in \{0, \ldots, M-1\}} \sum_{j=0}^{N-1} \lambda_j C_{ij} p_j(y) \, dy$$

$$= \int_{y \in \mathcal{Y}} \min_{i \in \{0, \ldots, M-1\}} g_i(y, \lambda) \, dy$$

$$= \sum_{i=0}^{M-1} \int_{y \in \mathcal{Y}_i^*} g_i(y, \lambda) \, dy$$

1. The existence of at least one deterministic decision rule solving LPF(λ) or LP(λ) implies the existence of an optimal partition of \mathcal{Y}.

2. Since the problems LPF(λ) and LP(λ) always yield at least one deterministic decision rule, another way to think of these problems is: “Find a partition of the observation space that minimizes the weighted risk”.

Worcester Polytechnic Institute
D. Richard Brown III
26-January-2011
Bayesian Hypothesis Testing

Infinite Observation Spaces: Putting it All Together

A decision rule that solves LP(\(\lambda\)) is then

\[
\rho^*_i(y) = \begin{cases}
1 & \text{if } i = \arg \min_{m \in \{0, \ldots, M-1\}} g_m(y, \lambda) \\
0 & \text{otherwise}
\end{cases}
\]

where \(\rho^*(y) = [\rho^*_0(y), \ldots, \rho^*_{M-1}(y)]^\top\).

Remarks:

1. The solution to LP(\(\lambda\)) may not be unique.
2. If there is more than one deterministic solution to LP(\(\lambda\)) then there will also be a corresponding convex hull of randomized decision rules that also achieve \(r^*(\lambda)\).
3. Note that the standard convention for deterministic decision rules is \(\delta : \mathcal{Y} \mapsto \mathcal{Z}\). An equivalent way of specifying a deterministic decision rule that solves LP(\(\lambda\)) is

\[
\delta^*(y) = \arg \min_{i \in \{0, \ldots, M-1\}} g_i(y, \lambda).
\]
The Bayesian Approach

We assume a prior state distribution $\pi \in \mathcal{P}_N$ such that

$$\text{Prob(state is } x_j) = \pi_j$$

Note that this is our model of the state probabilities prior to the observation.

We denote the Bayes Risk of the decision rule ρ as

$$r(\rho, \pi) = \sum_{j=0}^{N-1} \pi_j R_j(\rho) = \sum_{j=0}^{N-1} \pi_j \int_{y \in \mathcal{Y}} p_j(y) \sum_{i=0}^{M-1} C_{ij} \rho_i(y) \, dy.$$

This is simply the weighted overall risk, or average risk, given our prior belief of the state probabilities. A decision rule that minimizes this risk is called a Bayes decision rule for the prior π.
Solving Bayesian Hypothesis Testing Problems

We know how to solve this problem. For finite \mathcal{Y}, we just find the index

$$m_\ell = \arg \min_{i \in \{0, \ldots, M-1\}} \sum_{j=0}^{N-1} \pi_j C_{ij} P_{\ell j}$$

and set $D_{m_\ell, \ell}^{B, \pi} = 1$ and $D_{i, \ell}^{B, \pi} = 0$ for all $i \neq m_\ell$.

For infinite \mathcal{Y}, we just find the index

$$m_{y_0} = \arg \min_{i \in \{0, \ldots, M-1\}} \sum_{j=0}^{N-1} \pi_j C_{ij} p_j(y_0)$$

and set $\delta_{B, \pi}(y_0) = m_{y_0}$ (or, equivalently, set $\rho_{m_{y_0}, y_0}^{B, \pi} = 1$ and $\rho_{i, y_0}^{B, \pi} = 0$ for all $i \neq m_{y_0}$).
Prior and Posterior Probabilities

The conditional probability that \mathcal{H}_j is true given the observation y:

$$\pi_j(y) := \text{Prob}(\mathcal{H}_j \text{ is true} \mid Y = y) = \frac{p_j(y)\pi_j}{p(y)}$$

where

$$p(y) = \sum_{j=0}^{N-1} \pi_j p_j(y).$$

- Recall that π_j is the prior probability of choosing \mathcal{H}_j, before we have any observations.
- The quantity $\pi_j(y)$ is the posterior probability of choosing \mathcal{H}_j, conditioned on the observation y.
A Bayes Decision Rule Minimizes The Posterior Cost

General expression for a deterministic Bayes decision rule:

\[\delta^{B\pi}(y) = \arg\min_{i \in \{0, \ldots, M-1\}} \sum_{j=0}^{N-1} \pi_j C_{ij} p_j(y) \]

But \(\pi_j p_j(y) = \pi_j(y) p(y) \), hence

\[\delta^{B\pi}(y) = \arg\min_{i \in \{0, \ldots, M-1\}} \sum_{j=0}^{N-1} C_{ij} \pi_j(y) p(y) \]

\[= \arg\min_{i \in \{0, \ldots, M-1\}} \sum_{j=0}^{N-1} C_{ij} \pi_j(y) \]

since \(p(y) \) does not affect the minimizer. What does this mean?

\[\sum_{j=0}^{N-1} C_{ij} \pi_j(y) \] the average cost of choosing hypothesis \(\mathcal{H}_i \) given \(Y = y \), i.e. the posterior cost of choosing \(\mathcal{H}_i \). The Bayes decision rule chooses the hypothesis that yields the minimum expected posterior cost.
The uniform cost assignment (UCA):

\[C_{ij} = \begin{cases}
0 & \text{if } x_j \in H_i \\
1 & \text{otherwise}
\end{cases} \]

The conditional risk \(R_j(\rho) \) under the UCA is simply the probability of not choosing the hypothesis that contains \(x_j \), i.e. the probability of error when the state is \(x_j \). The Bayes risk in this case is

\[
r(\rho, \pi) = \sum_{j=0}^{N-1} \pi_j R_j(\rho) = \text{Prob}(\text{error}).
\]
Bayesian Hypothesis Testing

Under the UCA, a Bayes decision rule can be written in terms of the posterior probabilities as

\[
\delta^{B\pi}(y) = \arg \min_{i \in \{0, \ldots, M-1\}} \sum_{j=0}^{N-1} C_{ij} \pi_j(y)
\]

\[
= \arg \min_{i \in \{0, \ldots, M-1\}} \sum_{x_j \notin \mathcal{H}_i} \pi_j(y)
\]

\[
= \arg \min_{i \in \{0, \ldots, M-1\}} \left[1 - \sum_{x_j \in \mathcal{H}_i} \pi_j(y) \right]
\]

\[
= \arg \max_{i \in \{0, \ldots, M-1\}} \sum_{x_j \in \mathcal{H}_i} \pi_j(y)
\]

Hence, for hypothesis tests under the UCA, the Bayes decision rule is the MAP (maximum a posteriori) decision rule. When the hypothesis test is simple, \(\delta^{B\pi}(y) = \arg \max_i \pi_i(y) \).
Bayesian Hypothesis Testing with UCA and Uniform Prior

Under the UCA and a uniform prior, i.e. \(\pi_j = 1/N \) for all \(j = 0, \ldots, N - 1 \)

\[
\delta^{B \pi}(y) = \arg \max_{i \in \{0, \ldots, M-1\}} \sum_{x_j \in \mathcal{H}_i} \pi_j(y)
\]

\[
= \arg \max_{i \in \{0, \ldots, M-1\}} \sum_{x_j \in \mathcal{H}_i} \pi_j p_j(y)
\]

\[
= \arg \max_{i \in \{0, \ldots, M-1\}} \sum_{x_j \in \mathcal{H}_i} p_j(y)
\]

since \(\pi_j = 1/N \) does not affect the minimizer.

- In this case, \(\delta^{B \pi}(y) \) selects the most likely hypothesis, i.e. the hypothesis which best explains the observation \(y \).
- This is called the maximum likelihood (ML) decision rule.
- Which is better, MAP or ML?
Simple Binary Bayesian Hypothesis Testing: Part 1

We have two states \(x_0 \) and \(x_1 \) and two hypotheses \(H_0 \) and \(H_1 \). For each \(y \in \mathcal{Y} \), our problem is to compute

\[
m_y = \arg \min_{i \in \{0,1\}} g_i(y, \pi)
\]

where

\[
g_0(y, \pi) = \pi_0 C_{00} p_0(y) + \pi_1 C_{01} p_1(y)
\]
\[
g_1(y, \pi) = \pi_0 C_{10} p_0(y) + \pi_1 C_{11} p_1(y)
\]

We only have two things to compare. We can simplify this comparison:

\[
g_0(y, \pi) \geq g_1(y, \pi) \iff \pi_0 C_{00} p_0(y) + \pi_1 C_{01} p_1(y) \geq \pi_0 C_{10} p_0(y) + \pi_1 C_{11} p_1(y)
\]
\[
\iff p_1(y) \pi_1 (C_{01} - C_{11}) \geq p_0(y) \pi_0 (C_{10} - C_{00})
\]
\[
\iff \frac{p_1(y)}{p_0(y)} \geq \frac{\pi_0 (C_{10} - C_{00})}{\pi_1 (C_{01} - C_{11})}
\]

where we have assumed that \(C_{01} > C_{11} \) to get the final result.

The expression \(L(y) := \frac{p_1(y)}{p_0(y)} \) is known as the likelihood ratio.
Given \(L(y) := \frac{p_1(y)}{p_0(y)} \) and

\[
\tau := \frac{\pi_0(C_{10} - C_{00})}{\pi_1(C_{01} - C_{11})},
\]

our Bayes decision rule is then simply

\[
\delta^{B\pi}(y) = \begin{cases}
1 & \text{if } L(y) > \tau \\
0/1 & \text{if } L(y) = \tau \\
0 & \text{if } L(y) < \tau.
\end{cases}
\]

Remark:

- For any \(y \in \mathcal{Y} \) that result in \(L(y) = \tau \), the Bayes risk is the same whether we decide \(\mathcal{H}_0 \) or \(\mathcal{H}_1 \). You can deal with this by always deciding \(\mathcal{H}_0 \) in this case, or always deciding \(\mathcal{H}_1 \), or flipping a coin, etc.
Simple Binary Bayesian Hypothesis Testing with UCA

Uniform cost assignment:

\[C_{00} = C_{11} = 0 \]
\[C_{01} = C_{10} = 1 \]

In this case, the discriminant functions are simply

\[g_0(y, \pi) = \pi_1 p_1(y) = \pi_1(y) p(y) \]
\[g_1(y, \pi) = \pi_0 p_0(y) = \pi_0(y) p(y) \]

and a Bayes decision rule can be written in terms of the posterior probabilities as

\[\delta^{B\pi}(y) = \begin{cases}
1 & \text{if } \pi_1(y) > \pi_0(y) \\
0/1 & \text{if } \pi_1(y) = \pi_0(y) \\
0 & \text{if } \pi_1(y) < \pi_0(y).
\end{cases} \]

In this case, it should be clear that the Bayes decision rule is the MAP (maximum a posteriori) decision rule.
Example: Coherent Detection of BPSK

Suppose a transmitter sends one of two scalar signals and the signals arrive at a receiver corrupted by zero-mean additive white Gaussian noise (AWGN) with variance σ^2. We want to use Bayesian hypothesis testing to determine which signal was sent.

Signal model conditioned on state x_j:

$$Y = a_j + \eta$$

where a_j is the scalar signal and $\eta \sim \mathcal{N}(0, \sigma^2)$. Hence

$$p_j(y) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(\frac{-(y - a_j)^2}{2\sigma^2}\right)$$

Hypotheses:

$\mathcal{H}_0 : a_0$ was sent, or $Y \sim \mathcal{N}(a_0, \sigma^2)$

$\mathcal{H}_1 : a_1$ was sent, or $Y \sim \mathcal{N}(a_1, \sigma^2)$
Example: Coherent Detection of BPSK

This is just a simple binary hypothesis testing problem. Under the UCA, we can write

\[R_0(\rho) = \int_{y \in \mathcal{Y}_1} \frac{1}{\sqrt{2\pi\sigma}} \exp\left(\frac{-(y - a_0)^2}{2\sigma^2}\right) \, dy \]

\[R_1(\rho) = \int_{y \in \mathcal{Y}_0} \frac{1}{\sqrt{2\pi\sigma}} \exp\left(\frac{-(y - a_1)^2}{2\sigma^2}\right) \, dy \]

where \(\mathcal{Y}_j = \{y \in \mathcal{Y} : \rho_j(y) = 1\} \). Intuitively,
Example: Coherent Detection of BPSK

Given a prior π_0, $\pi_1 = 1 - \pi_0$, we can write the Bayes risk as

$$r(\rho, \pi) = \pi_0 R_0(\rho) + (1 - \pi_0) R_1(\rho)$$

The Bayes decision rule can be found by computing the likelihood ratio and comparing it to the threshold τ:

$$L(y) = \frac{p_1(y)}{p_0(y)} > \tau \iff \frac{\exp\left(\frac{-(y-a_1)^2}{2\sigma^2}\right)}{\exp\left(\frac{-(y-a_0)^2}{2\sigma^2}\right)} > \frac{\pi_0}{\pi_1}$$

$$\iff \frac{(y - a_0)^2 - (y - a_1)^2}{2\sigma^2} > \ln \frac{\pi_0}{\pi_1}$$

$$\iff y > \frac{a_0 + a_1}{2} + \frac{\sigma^2}{a_1 - a_0} \ln \frac{\pi_0}{\pi_1}$$
Example: Coherent Detection of BPSK

Let $\psi := \frac{a_0 + a_1}{2} + \frac{\sigma^2}{a_1 - a_0} \ln \frac{\pi_0}{\pi_1}$. Our Bayes decision rule is then:

$$
\delta^{B\pi}(y) = \begin{cases}
1 & \text{if } y > \psi \\
0 & \text{if } y = \psi \\
0 & \text{if } y < \psi.
\end{cases}
$$

Using this decision rule, the Bayes risk is then

$$
r(\delta^{B\pi}, \pi) = \pi_0 Q \left(\frac{\psi - a_0}{\sigma} \right) + (1 - \pi_0) Q \left(\frac{a_1 - \psi}{\sigma} \right)
$$

where $Q(x) := \int_x^\infty \frac{1}{\sqrt{2\pi}} e^{-t^2/2} \, dt$. Remarks:

- When $\pi_0 = \pi_1 = \frac{1}{2}$, the decision boundary is simply $\frac{a_0 + a_1}{2}$, i.e. the midpoint between a_0 and a_1 and $r(\delta^{B\pi}, \pi) = Q \left(\frac{a_1 - a_0}{2\sigma} \right)$.
- When σ is very small, the prior has little effect on the decision boundary. When σ is very large, the prior becomes more important.
Composite Binary Bayesian Hypothesis Testing

We have $N > 2$ states x_0, \ldots, x_{N-1} and two hypotheses H_0 and H_1 that form a valid partition on these states. For each $y \in \mathcal{Y}$, we compute

$$m_y = \arg\min_{i \in \{0,1\}} g_i(y, \pi), \text{ where } g_i(y, \pi) = \sum_{j=0}^{N-1} \pi_j C_{ij} p_j(y)$$

As was the case of simple binary Bayesian hypothesis testing, we only have two things to compare. The comparison boils down to

$$g_0(y, \pi) \geq g_1(y, \pi) \iff J(y) := \frac{\sum_j \pi_j C_{0j} p_j(y)}{\sum_j \pi_j C_{1j} p_j(y)} \geq 1.$$

Hence, a Bayes decision rule for the composite binary hypothesis testing problem is then simply

$$\delta^{B\pi}(y) = \begin{cases} 1 & \text{if } J(y) > 1 \\ 0/1 & \text{if } J(y) = 1 \\ 0 & \text{if } J(y) < 1. \end{cases}$$
Composite Binary Bayesian Hypothesis Testing with UCA

For $i = 0, 1$ and $j = 0, \ldots, N - 1$, the UCA is:

$$C_{ij} = \begin{cases}
0 & \text{if } x_j \in \mathcal{H}_i \\
1 & \text{otherwise}
\end{cases}$$

Hence, the discriminant functions are

$$g_i(y, \pi) = \sum_{x_j \in \mathcal{H}_i^c} \pi_j p_j(y) = 1 - \sum_{x_j \in \mathcal{H}_i} \pi_j p_j(y) = 1 - \sum_{x_j \in \mathcal{H}_i} \pi_j(y)p(y)$$

Under the UCA, the hypothesis test comparison boils down to

$$g_0(y, \pi) \geq g_1(y, \pi) \iff J(y) := \frac{\sum_{x_j \in \mathcal{H}_1} \pi_j(y)}{\sum_{x_j \in \mathcal{H}_0} \pi_j(y)} \geq 1.$$

and the Bayes decision rule $\delta^B\pi(y)$ is the same as before. Note that

$$J(y) := \frac{\sum_{x_j \in \mathcal{H}_1} \pi_j(y)}{\sum_{x_j \in \mathcal{H}_0} \pi_j(y)} = \frac{\text{Prob}(\mathcal{H}_1|y)}{\text{Prob}(\mathcal{H}_0|y)}$$

so, as before, the Bayes decision rule is the MAP decision rule.
Final Remarks on Bayesian Hypothesis Testing

1. A Bayes decision rule minimizes the Bayes risk $r(\rho, \pi) = \sum_j \pi_j R_j(\rho)$ under the prior state distribution π.

2. At least one deterministic decision rule $\delta^{B\pi}(y)$ achieves the minimum Bayes risk for any prior state distribution π.

3. The prior state distribution π can also be thought of as a parameter.
 - By varying π, we can generate a family of Bayes decision rules $\delta^{B\pi}$ parameterized by π.
 - This family of Bayes decision rules can achieve any operating point on the optimal tradeoff surface (or ROC curve).

4. In some applications, a prior state distribution is difficult to determine (or the risks cannot be weighted against each other). It may be more appropriate to use N-P in those cases.