ECE531 Screencast 1.3: Unbiased Estimators

D. Richard Brown III

Worcester Polytechnic Institute

Uniformly Best Estimator? (part 1)

Consider the squared-error cost assignment and a scalar non-random parameter $\theta.$ The average cost is

$$R_{\theta}(\hat{\theta}) = E_{\theta} \left[(\theta - \hat{\theta}(Y))^2 \right]$$

where the expectation is taken over the observations.

Question: Is it possible to find a "uniformly best" estimator that minimizes $R_{\theta}(\hat{\theta})$ for all θ ?

Uniformly Best Estimator? (part 2)

Suppose you receive one observation

$$Y = \theta + W$$

where $\theta \in \mathbb{R}$ and $W \sim \mathcal{N}(0, 1)$. Suppose further that your estimator is

$$\hat{\theta}(y) = ay$$

where a is a scalar parameter that you will specify to minimize $R_{\theta}(\hat{\theta})$. We can calculate

$$R_{\theta}(\hat{\theta}) = E_{\theta} \left[(\theta - aY)^2 \right]$$
$$= \theta^2 - 2a\theta E[Y] + a^2 E[Y^2]$$
$$= \theta^2 - 2a\theta^2 + a^2(\theta^2 + 1)$$

How can we find the value of a that minimizes this?

Uniformly Best Estimator? (part 3)

To find the value of a that minimizes

$$R_{\theta}(\hat{\theta}) = \theta^2 - 2a\theta^2 + a^2(\theta^2 + 1)$$

we can take a derivative with respect to $\boldsymbol{a},$ set it to zero, and solve for \boldsymbol{a} to get

$$a = \frac{\theta^2}{\theta^2 + 1}.$$

You can easily verify this value of a is in fact a minimum. Hence

$$\hat{\theta}(y) = \frac{\theta^2}{\theta^2 + 1}y$$

is the estimator that minimizes $R_{ heta}(\hat{ heta})$ over all heta.

What is the problem with this result?

Our Approach: Consider Only Unbiased Estimators

Since "uniformly best" non-random parameter estimators are unlikely to exist in most cases, we will consider only the class of **unbiased estimators**.

Definition

An estimator $\hat{\theta}(y)$ is unbiased if

$$\mathbf{E}_{\theta} \left[\hat{\theta}(Y) \right] = \theta$$

for all $\theta \in \Lambda$.

Remarks:

- This class excludes trivial estimators like $\hat{\theta}(y) \equiv \theta_0$ (constant).
- Under the squared-error cost assignment, the average cost of estimators in this class

$$R_{\boldsymbol{\theta}}(\hat{\boldsymbol{\theta}}) = \mathrm{E}_{\boldsymbol{\theta}}\left[(\boldsymbol{\theta} - \hat{\boldsymbol{\theta}}(\boldsymbol{Y}))^2\right] = \mathrm{var}_{\boldsymbol{\theta}}\left[\hat{\boldsymbol{\theta}}(\boldsymbol{Y})\right]$$

> The goal: find an unbiased estimator with minimum variance.