ECE531 Screencast 10.2: Binary Detection in Additive White Gaussian Noise

D. Richard Brown III

Worcester Polytechnic Institute

Binary Detection in Additive White Gaussian Noise

Problem setup:

- ▶ We have two known discrete-time signals $s_0, s_1 \in \mathbb{R}^n$ that are observed in additive white Gaussian noise.
- ▶ A signal $x \in \{s_0, s_1\}$ is transmitted and we observe a realization $y \in \mathbb{R}^n$ of the random variable

$$Y = x + W$$

where $W \sim \mathcal{N}(0, \sigma^2 I)$ is zero mean-additive Gaussian noise.

- We assume that the receiver knows the noise distribution $\mathcal{N}(0,\sigma^2I)$.
- ▶ Given the observation y, we must decide whether s_0 or s_1 was transmitted.
- ▶ This is called a **coherent** detection problem because the signals s_0 and s_1 are deterministic and are completely known in advance to the detector/receiver.

Conditional Distributions and Decision Rules

Conditioned on $x=s_j$, we can write density of the vector observation as

$$p_j(y) = \frac{1}{(2\pi\sigma^2)^{n/2}} \exp\left(-\frac{(y-s_j)^{\top}(y-s_j)}{2\sigma^2}\right)$$

This coherent detection problem is just a simple binary HT problem. We know we are going to have decision rules of the form:

$$\rho(y) = \begin{cases} 1 & \text{if } L(y) > v \\ \gamma & \text{if } L(y) = v \\ 0 & \text{if } L(y) < v \end{cases}$$

Hence, we are going to have to compute the likelihood ratio...

Likelihood Ratio

$$L(y) = \frac{p_1(y)}{p_0(y)}$$

= $\exp\left(\frac{(y - s_0)^\top (y - s_0) - (y - s_1)^\top (y - s_1)}{2\sigma^2}\right)$

It is more convenient to work with the log-likelihood ratio here. Let

$$\ell(y) := 2\sigma^2 \ln(L(y)) = (y - s_0)^\top (y - s_0) - (y - s_1)^\top (y - s_1)$$

Then we can write the decision rule template as

$$\rho(y) = \begin{cases} 1 & \text{if } \ell(y) \ge 2\sigma^2 \ln v \\ 0 & \text{if } \ell(y) < 2\sigma^2 \ln v \end{cases}$$

Note that we dropped the case $\rho(y) = \gamma$ because randomization will not be needed here $(\ell(y) = 2\sigma^2 \ln v)$ with probability zero).

Correlation Form of the Decision Rule

We can write the statistic used in our decision rule as

$$\ell(y) = (y - s_0)^{\top} (y - s_0) - (y - s_1)^{\top} (y - s_1)$$

$$= ||y||^2 - 2s_0^{\top} y + ||s_0||^2 - (||y||^2 - 2s_1^{\top} y + ||s_1||^2)$$

$$= 2(s_1 - s_0)^{\top} y + ||s_0||^2 - ||s_1||^2$$

Hence, our decision rule template can be further simplified as

$$\rho(y) = \begin{cases} 1 & (s_1 - s_0)^{\top} y \ge \sigma^2 \ln v + \frac{1}{2} (||s_1||^2 - ||s_0||^2) \\ 0 & < \end{cases}$$
 (1)

All that remains is to specify v. Equivalently, since σ^2 , $\|s_0\|^2$ and $\|s_1\|^2$ are all known, we can also just specify $v' = \sigma^2 \ln v + \frac{1}{2}(||s_1||^2 - ||s_0||^2)$.

Statistics of the Decision Variable $Z = (s_1 - s_0)^{\top} Y$

Our decision rule is based on a comparison of $z = (s_1 - s_0)^{\top} y$ with some threshold v'. Let $s := s_1 - s_0$.

- Note that $z = s^{\top}y$ is the inner product (or deterministic correlation) between the observation y and the signal difference vector s.
- ▶ When $x = s_j$, the observation $Y \sim \mathcal{N}(s_j, \sigma^2 I)$.
- ▶ When $x = s_j$, how is $Z = s^\top Y$ distributed?
 - ▶ Given $x = s_j$, $Z \sim \mathcal{N}(\mu_j, \sigma_Z^2)$ is a Gaussian random variable.

$$\mu_{j} := \operatorname{E}[Z \mid x = s_{j}] = \operatorname{E}[s^{\top}Y \mid x = s_{j}] = s^{\top}\operatorname{E}[Y \mid x = s_{j}] = s^{\top}s_{j}$$

$$= (s_{1} - s_{0})^{\top}s_{j}$$

$$\sigma_{Z}^{2} := \operatorname{E}[(Z - s^{\top}s_{j})^{2} \mid x = s_{j}] = \operatorname{E}[(s^{\top}Y - s^{\top}s_{j})^{2} \mid x = s_{j}]$$

$$= \operatorname{E}[(s^{\top}(Y - s_{j}))^{2} \mid x = s_{j}] = \operatorname{E}[(s^{\top}W)^{2}]$$

$$= s^{\top}\operatorname{E}[WW^{\top}]s = \sigma^{2}s^{\top}s = \sigma^{2}||s||^{2}$$

$$= \sigma^{2}(s_{1} - s_{0})^{\top}(s_{1} - s_{0}).$$

Neyman-Pearson and Bayes Decision Rules

In both cases, the decision rule is of the form (with $z = (s_1 - s_0)^{\top} y$)

$$\rho(y) = \begin{cases} 1 & z \ge v' \\ 0 & < \end{cases}$$

Neyman-Pearson: A false positive occurs if $x = s_0$ and $Z \ge v'$. Given $x = s_0$, the decision variable $Z \sim \mathcal{N}(s^\top s_0, \sigma^2 ||s||^2)$. Hence

$$P_{\mathsf{fp}} = Q\left(\frac{v' - s^{\top} s_0}{\sigma \|s\|}\right) \le \alpha$$

Setting this equal to α yields $v' = \sigma \|s\| Q^{-1}(\alpha) + s^{\top} s_0$. The probability of detection is then $P_D = Q\left(\frac{v' - s^{\top} s_1}{\sigma \|s\|}\right)$.

Bayes: The Bayes detector requires the specification of a prior π_0 and a cost matrix C. The decision threshold is $v' = \sigma^2 \ln \tau + \frac{1}{2}(||s_1||^2 - ||s_0||^2)$ with

$$\tau := \frac{\pi_0(C_{10} - C_{00})}{\pi_1(C_{01} - C_{11})}.$$