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Binary Detection in Correlated Noise

Problem setup:

◮ We have two known discrete-time signals s0, s1 ∈ R
n that are

observed in additive white Gaussian noise.

◮ A signal x ∈ {s0, s1} is transmitted and we observe a realization
y ∈ R

n of the random variable

Y = x+W

where W ∼ N (0,Σ) is zero mean-additive Gaussian noise.

◮ The positive definite noise covariance matrix Σ is defined as

Σ = E[WW⊤]

◮ We assume that the receiver knows the noise distribution N (0,Σ).

◮ Given the observation y, we must decide whether s0 or s1 was
transmitted.

◮ Like the case with AWGN, this is a simple binary HT problem.
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Likelihood Ratio

L(y) =
p1(y)

p0(y)

= exp

(

(y − s0)
⊤Σ−1(y − s0)− (y − s1)

⊤Σ−1(y − s1)

2

)

Converting to a log-likelihood ratio, we can write

ℓ(y) := 2 ln(L(y))

= (y − s0)
⊤Σ−1(y − s0)− (y − s1)

⊤Σ−1(y − s1)

The decision rule template is similar to the AWGN case:

ρ(y) =

{

1 if ℓ(y) ≥ 2 ln v

0 if ℓ(y) < 2 ln v

Worcester Polytechnic Institute D. Richard Brown III 3 / 6



ECE531 Screencast 10.3: Binary Detection in Correlated Noise

Decorrelation

Lemma

A real symmetric matrix P is positive definite if and only if there exists a

nonsingular matrix S such that P = S⊤S.

Given P , how can we find S such that P = S⊤S?
Cholesky factorization (see Matlab function chol).

Since Σ is positive definite, then so is Σ−1. Hence, we can write

Σ−1 = S⊤S

where S is invertible. Now let

ȳ = Sy

= S(x+ w)

=

{

s̄0 + w̄ if x = s0

s̄1 + w̄ if x = s1
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Decorrelation

Note that S just specifies a one-to-one coordinate transformation between
R
n and R

n. In this new coordinate system

(y − sj)
⊤Σ−1(y − sj) = (y − sj)

⊤S⊤S(y − sj)

= [S(y − sj)]
⊤
S(y − sj)

= (ȳ − s̄j)
⊤(ȳ − s̄j)

= ||ȳ − s̄j||
2

The noise is still Gaussian after this transformation, of course, with

E[W̄ ] = E[SW ] = 0

E[W̄ W̄⊤] = E[SWW⊤S⊤] = SE[WW⊤]S⊤ = SΣS⊤ = I

Hence, the coordinate transformation has decorrelated (whitened) the
noise. After this decorrelation operation, we can just use our prior results
for binary detection in AWGN.
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Neyman-Pearson and Bayes Decision Rules

In both cases, the decision rule is of the form (with z̄ = (s̄1 − s̄0)
⊤ȳ)

ρ(y) =

{

1 z̄ ≥ v′

0 <

Neyman-Pearson: A false positive occurs if x = s0 and Z̄ ≥ v′. Given x = s0,
the decision variable Z̄ ∼ N (s̄⊤s̄0, ‖s̄‖2). Hence

Pfp = Q

(

v′ − s̄⊤s̄0

‖s̄‖

)

≤ α

Setting this equal to α yields v′ = ‖s̄‖Q−1(α) + s̄⊤s̄0. The probability of

detection is then PD = Q
(

v
′−s̄

⊤
s̄1

σ‖s̄‖

)

.

Bayes: The Bayes detector requires the specification of a prior π0 and a cost
matrix C. The decision threshold is v′ = ln τ + 1

2
(||s̄1||2 − ||s̄0||2) with

τ :=
π0(C10 − C00)

π1(C01 − C11)
.
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