ECE531 Screencast 10.5: M-ary Bayesian Detection

D. Richard Brown III

Worcester Polytechnic Institute

M-ary Detection in Correlated Noise

Problem setup:

- ▶ We have M known discrete-time signals $s_0, \ldots, s_{M-1} \in \mathbb{R}^n$ that are observed in additive white Gaussian noise.
- ▶ A signal $x \in \{s_0, \dots, s_{M-1}\}$ is transmitted and we observe a realization $y \in \mathbb{R}^n$ of the random variable

$$Y = x + W$$

where $W \sim \mathcal{N}(0, \Sigma)$ is zero mean-additive Gaussian noise.

 \blacktriangleright The positive definite noise covariance matrix Σ is defined as

$$\Sigma = \mathrm{E}[WW^{\top}]$$

- ▶ We assume that the receiver knows the noise distribution $\mathcal{N}(0,\Sigma)$.
- ightharpoonup Given the observation y, we must decide which signal was transmitted.
- ▶ This is a simple M-ary HT problem.
- ▶ We will only consider Bayesian detection in this case.

M-ary Bayesian Decision Rules

For a given prior $\pi=[\pi_0,\ldots,\pi_{M-1}]$, hypotheses $\mathcal{H}_0,\ldots,\mathcal{H}_{M-1}$ associated each with one of the possible signals, and costs C_{ij} for $i,j\in 0,\ldots,M-1$, we have the deterministic Bayesian decision rule (infinite observation space):

$$\delta^{B\pi}(y) = \arg\min_{i \in \{0, \dots, M-1\}} \sum_{j=0}^{M-1} \pi_j C_{ij} p_j(y)$$

where

$$p_j(y) = \frac{1}{(2\pi)^{n/2} |\Sigma|^{1/2}} \exp\left(-\frac{(y - s_j)^{\top} \Sigma^{-1} (y - s_j)}{2}\right)$$

This is the general form. M-ary detection does not reduce to simply computing a likelihood ratio unless M=N=2.

M-ary Bayesian Decision Rules: Simplification

We have

$$p_j(y) = \frac{1}{(2\pi)^{n/2} |\Sigma|^{1/2}} \exp\left(-\frac{(y-s_j)^\top \Sigma^{-1} (y-s_j)}{2}\right)$$

The term $\frac{1}{(2\pi)^{n/2}|\Sigma|^{1/2}}>0$ is common to all of these $p_j(y)$, so we can ignore it in the minimization. Hence

$$\delta^{B\pi}(y) = \arg\min_{i \in \{0, \dots, M-1\}} \sum_{j=0}^{M-1} \pi_j C_{ij} \exp\left(-\frac{(y-s_j)^\top \Sigma^{-1} (y-s_j)}{2}\right)$$
$$= \arg\min_{i \in \{0, \dots, M-1\}} \sum_{j=0}^{M-1} \pi_j C_{ij} \exp\left(-\frac{1}{2} \|\bar{y} - \bar{s}_j\|^2\right)$$

where $\Sigma^{-1} = S^{\top}S$, $\bar{y} = Sy$, and $\bar{s}_j = Ss_j$. Further simplification will require some assumptions about the prior and the costs...

M-ary Bayesian Decision Rules: Equiprobable with UCA

In the case of an M-ary communication system, we typically have equiprobable signals and assume the UCA so that the Bayes risk becomes the probability of error. In this case, we have $\pi_j=\frac{1}{M}$ and $C_{ij}=0$ if i=j and $C_{ij}=1$ otherwise. Hence,

$$\delta^{B\pi}(y) = \arg\min_{i \in \{0, \dots, M-1\}} \sum_{j=0}^{M-1} \pi_j C_{ij} \exp\left(-\frac{1}{2} \|\bar{y} - \bar{s}_j\|^2\right)$$

$$= \arg\min_{i \in \{0, \dots, M-1\}} \sum_{j=0}^{M-1} (1 - \delta(i-j)) \exp\left(-\frac{1}{2} \|\bar{y} - \bar{s}_j\|^2\right)$$

$$= \arg\max_{i \in \{0, \dots, M-1\}} \exp\left(-\frac{1}{2} \|\bar{y} - \bar{s}_i\|^2\right)$$

$$= \arg\min_{i \in \{0, \dots, M-1\}} \|\bar{y} - \bar{s}_i\|^2$$

This is the minimum distance detector. If the noise is correlated, the distance is measured between the decorrelated observation \bar{y} and the decorrelated signal \bar{s}_j .

Minimum Distance Detection: Voronoi Regions

