ECE531 Screencast 10.6: Deterministic Signal Detection Example

D. Richard Brown III

Worcester Polytechnic Institute

Problem Setup: Kay vII Problem 4.6

It is desired to detect the known signal $s[k] = Ar^k$ for $k = 0, \ldots, n-1$ in white Gaussian noise with variance σ^2 Find the Neyman-Pearson detector and its detection performance. Explain what happens as $n \to \infty$ for 0 < r < 1, r = 1, and r > 1.

There are two hypotheses here:

 $\mathcal{H}_0 =$ the signal is not present $\mathcal{H}_1 =$ the signal is present

We can think of the states as

$$x_0$$
 = the signal is $s_0 = [0, \dots, 0]^{\top}$
 x_1 = the signal is $s_1 = [A, Ar, \dots, Ar^{n-1}]^{\top}$

We have two states and two hypotheses, so this is a simple binary hypothesis testing problem in AWGN.

Worcester Polytechnic Institute

Decision Rule Template

Let $y = [y_0, \ldots, y_{n-1}]^\top$ be the observation. Since we have a detection problem in AWGN, the decision rule template can be written as

$$\rho(y) = \begin{cases} 1 & (s_1 - s_0)^\top y \ge \sigma^2 \ln v + \frac{1}{2} (||s_1||^2 - ||s_0||^2) \\ 0 & < \end{cases}$$

which, when $s_0 = [0, \ldots, 0]^{\top}$ further simplifies to

$$\rho(y) = \begin{cases} 1 & s_1^\top y & \ge \sigma^2 \ln v + \frac{1}{2} ||s_1||^2 \\ 0 & < \end{cases}$$

Randomization is not necessary here.

All that remains is to specify v. Equivalently, since σ^2 and $||s_1||^2$ are known, we can also just specify $v' = \sigma^2 \ln v + \frac{1}{2} ||s_1||^2$.

Statistics of the Decision Variable $z = s_1^{\top} y$

To specify v, we need to know the mean and variance of $Z = s_1^\top Y$, under the assumption that the state is x_0 , so that we can set the decision threshold to satisfy the false positive probability constraint.

When the state is x_0 , we have Y = W with $W \sim \mathcal{N}(0, \sigma^2 I)$. Clearly $Z = s^{\top}Y = s^{\top}W$ is Gaussian distributed. We can calculate the mean and variance of Z under the assumption that the state is x_0 as

$$\mu_0 := \mathbf{E}[Z \mid x = s_0] = \mathbf{E}[s_1^\top Y \mid x = s_j] = s_1^\top \mathbf{E}[Y \mid x = s_0] = 0 \sigma_0^2 := \mathbf{E}[(Z - s_1^\top s_0)^2 \mid x = s_0] = \mathbf{E}[ZZ^\top \mid x = s_0] = s_1^\top \mathbf{E}[WW^\top]s_1 = \sigma^2 ||s_1||^2$$

with $||s_1||^2 = A^2 \sum_{k=0}^{n-1} r^{2k}$. A false positive occurs if the state is x_0 and $Z \ge v'$. Given the state is x_0 , the decision variable $Z \sim \mathcal{N}(0, \sigma^2 ||s_1||^2)$. Hence

$$P_{\mathsf{fp}} = Q\left(\frac{v'}{\sigma \|s_1\|}\right) \le \alpha$$

Neyman-Pearson Decision Rule

Since

$$P_{\mathsf{fp}} = Q\left(\frac{v'}{\sigma \|s_1\|}\right) \le \alpha$$

we can set this equal to α to get $v' = \sigma ||s_1||Q^{-1}(\alpha)$. This decision threshold satisfies the false positive probability constraint with equality.

The N-P decision rule then

$$\rho^{\rm NP}(y) = \begin{cases} 1 & s_1^\top y \ge \sigma \|s_1\| Q^{-1}(\alpha) \\ 0 & < \end{cases}$$

and the probability of detection is

$$P_D = Q\left(\frac{\sigma \|s_1\|Q^{-1}(\alpha) - \|s_1\|^2}{\sigma \|s_1\|}\right) = Q\left(Q^{-1}(\alpha) - \frac{\|s_1\|}{\sigma}\right)$$

Asymptotics

Explain what happens as $n \to \infty$ for 0 < r < 1, r = 1, and r > 1.

In general, we have $||s_1||^2 = A^2 \sum_{k=0}^{n-1} r^{2k}$. For the cases when r = 1 and r > 1, this clearly blows up as $n \to \infty$. Since

$$P_D = Q\left(Q^{-1}(\alpha) - \frac{\|s_1\|}{\sigma}\right)$$

the argument to the Q function is going to $-\infty$, hence $P_D \rightarrow 1.$

For 0 < r < 1, we have $||s_1||^2 = A^2 \sum_{k=0}^{n-1} r^{2k} \to \frac{A^2}{1-r^2}$. Hence

$$P_D \to Q\left(Q^{-1}(\alpha) - \frac{A}{\sigma\sqrt{1-r^2}}\right)$$

The probability of detection improves with larger A, smaller $\sigma,$ and/or r closer to 1.