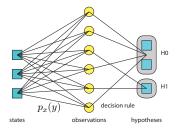
ECE531 Screencast 11.1: Introduction to Composite Hypothesis Testing

D. Richard Brown III

Worcester Polytechnic Institute

Introduction

Recall that **simple** hypothesis testing problems have one state per hypothesis. **Composite** hypothesis testing problems have at least one hypothesis containing more than one state.



Example: Y is Gaussian distributed with known variance σ^2 but unknown mean $\mu \in \mathbb{R}$. Given an observation Y = y, we want to decide if $\mu > \mu_0$.

- Only two hypotheses here: $\mathcal{H}_0: \mu \leq \mu_0$ and $\mathcal{H}_1: \mu > \mu_0$.
- This is a binary composite hypothesis testing problem with an uncountably infinite number of states.

Mathematical Model and Notation

- \blacktriangleright Let ${\mathcal X}$ be the set of states. ${\mathcal X}$ can now be
 - ▶ finite, e.g. {0,1},
 - countably infinite, e.g. $\{0, 1, \dots\}$, or
 - uncountably infinite, e.g. [0,1] or \mathbb{R}^2 .
- We still assume a finite number of hypotheses H₀,..., H_{M-1} with M < ∞. As before, hypotheses are defined as a partition on X.</p>
 - Composite HT: At least one hypothesis contains more than one state.
 - If X is infinite (countably or uncountably), at least one hypothesis must contain an infinite number of states.
- Let $C^{\top}(x) = [C_{0,x}, \dots, C_{M-1,x}]^{\top}$ be the vector of costs associated with making decision $i \in \mathbb{Z} = \{0, \dots, M-1\}$ when the state is x.
- Let \mathcal{Y} be the set of observations.
- ► Each state x ∈ X has an associated conditional pmf or pdf p_x(y) that specifies how states are mapped to observations. These conditional pmfs/pdfs are, as always, assumed to be known.

The Uniform Cost Assignment in Composite HT Problems

In general, for $i=0,\ldots,M-1$ and $x\in\mathcal{X}$, the UCA is given as

$$C_i(x) = egin{cases} 0 & ext{if } x \in \mathcal{H}_i \ 1 & ext{otherwise.} \end{cases}$$

We can also form a cost vector $C(x) = [C_0(x), \ldots, C_{M-1}(x)]^\top$.

Example: A random variable Y is Gaussian distributed with known variance σ^2 but unknown mean $\mu \in \mathbb{R}$. Given an observation Y = y, we want to decide among $\mathcal{H}_0: \mu < -1$, $\mathcal{H}_1: -1 \leq \mu \leq 1$, and $\mathcal{H}_2: \mu > 1$.

Uniform cost assignment $(x = \mu)$:

$$C(\mu) = \begin{cases} [0, 1, 1]^\top & \text{if } \mu < -1 \\ [1, 0, 1]^\top & \text{if } -1 \le \mu \le 1 \\ [1, 1, 0]^\top & \text{if } \mu > 1 \end{cases}$$

Other cost assignments, e.g. squared error, are also possible.

Conditional Risk

Given decision rule ho, the conditional risk for state $x \in \mathcal{X}$ can be written as

$$R_x(\rho) = \int_{\mathcal{Y}} \rho^\top(y) C(x) p_x(y) \, dy$$

= $E[\rho^\top(Y) C(x) | \text{state is } x]$
= $E_x[\rho^\top(Y) C(x)]$

where the last expression is a common shorthand notation used in many textbooks.

Recall that the decision rule

$$\rho^{\top}(y) = [\rho_0(y), \dots, \rho_{M-1}(y)]$$

where $0 \leq \rho_i(y) \leq 1$ specifies the probability of deciding \mathcal{H}_i when you observe Y = y. Also recall that $\sum_i \rho_i(y) = 1$ for all $y \in \mathcal{Y}$.