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The Generalized Likelihood Ratio Test

We focus here on a binary composite hypothesis testing problem with
Ho:x € Xy versus Hy : x € X\Ap.

The main idea of the GLRT is to
» get an observation y
» estimate the most likely value of = under H (call this Zg)
» estimate the most likely value of = under H; (call this Z1)

and then use those estimates as “truth” so that we have a simple binary
hypothesis testing problem Hg : x = g versus Hy : © = ;.

You can then specify the decision rule via the standard N-P lemma for
simple binary hypothesis testing.
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Connection to Bayesian Composite Hypothesis Testing

Let p;(y;x) be the family of densities parameterized by = under hypothesis
H;. Often we have pg(y;x) = p1(y; ), but these densities don't have to
have the same form.

With the GLRT, we decide H; if

maXqzex\x, P1 (y;2)
maxgex, po(y; )

In the case of Bayesian binary hypothesis testing, we can show that we
decide H; if
fmeX\Xo pl(y|$) dx

Jeex, Po(ylz) dz

Intuition: The GLRT decision rule compares the most likely model in H;
to the most likely model in Hg. The Bayesian decision rule compares the
average model in H; to the average model in Hy, using the prior
probability distribution on the unknown state.
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GLRT Example (part 1 of 4)

Suppose we get a vector observation Y ~ N (Hz,0?I) in R" with o2
known and have two hypotheses: Hg : © = 0 versus H1 : x £ 0 for
z € RY. We assume H" H is invertible.

Given Y = g, we want to find the most likely x under Hg and H;.

For the denominator of the GLRT, we compute maxzecx, po(y;x). But
Xo = {0}, so the maximization is trivial. The denominator of the GLRT is

(y;2) = po( 0)= ——s vy
max ; = : = = X —
pex, O] = POLE (2mo2)n/2 AP T2

For the numerator, we compute max, o p1(y; ). Since this is a linear
Gaussian model, we can use the known results for the MLE to write
#1 = (H"H)"'H"y. Hence

max pi(y;z) =

L y—Hi) (y— Hiy)
2€X\Xo (2mo2)n/2 P

202
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GLRT Example (part 2 of 4)

The GLRT is then

(y—H&1) " (y—H#1)
maXzex\x, P1 (y; ) B P (_ 207 ) >0
maxgex, po(y; ) exp (‘%TT%)

with &1 = (H"H)"'H Ty = Py. Simplifying and taking the log of both
sides, we have

202

& HH'H)'H'y—y"HH H)'H HH " H)'H"y > "
& Yy HH H)H y >

sy Py >

(yTy — 2 " Hiy+ 4 H Hiy — yTy) >/

where we choose v” to satisfy the false positive probability constraint.
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GLRT Example (part 3 of 4)

Note that we can write H = QR where Q € RV*" is a matrix with
orthonormal columns and R € R™*" is an invertible upper triangular
matrix. This is called the (reduced) QR factorization.

Then
P=HH"H)'HT
= QR(R'Q'QR)'R'QT
=QRR"IR)'RTQT
— QRRYRT)RTQT
=QQ"
Hence our decision statistic is
YTPY =YTQQ'Y=2"Z

What is the distribution of Z under Hy?
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GLRT Example (part 4 of 4)

We have Z = QY with Y ~ N(0,021) under H,.

Clearly Z is Gaussian with E[Z] = E[QTY] = 0.
We can also compute

EZZ"]=EQTYYTQ] = Q" (0’ Inxn)Q = 0° Inxn
So Z ~ N(0,0%I) in R™ and Z.Z ~ 2.

Given a false positive probability constraint «, you can use the inverse
CDF of the Chi-squared distribution with n degrees of freedom to find the
optimum decision threshold.

For example, set a = 0.01 and n = 10. In Matlab, you can use v =
chi2inv(0.99,10) to get v = 23.2093. Then we decide H; if
Z'7 > vo?.
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