ECE531 Screencast 11.7: Generalized Likelihood Ratio Test

D. Richard Brown III

Worcester Polytechnic Institute

The Generalized Likelihood Ratio Test

We focus here on a binary composite hypothesis testing problem with $\mathcal{H}_0: x \in \mathcal{X}_0$ versus $\mathcal{H}_1: x \in \mathcal{X} \setminus \mathcal{X}_0$.

The main idea of the GLRT is to

- get an observation y
- estimate the most likely value of x under \mathcal{H}_0 (call this \hat{x}_0)
- estimate the most likely value of x under \mathcal{H}_1 (call this \hat{x}_1)

and then use those estimates as "truth" so that we have a simple binary hypothesis testing problem $\mathcal{H}_0: x = \hat{x}_0$ versus $\mathcal{H}_1: x = \hat{x}_1$.

You can then specify the decision rule via the standard N-P lemma for simple binary hypothesis testing.

Connection to Bayesian Composite Hypothesis Testing

Let $p_i(y;x)$ be the family of densities parameterized by x under hypothesis \mathcal{H}_i . Often we have $p_0(y;x) = p_1(y;x)$, but these densities don't have to have the same form.

With the GLRT, we decide \mathcal{H}_1 if

$$\frac{\max_{x \in \mathcal{X} \setminus \mathcal{X}_0} p_1(y;x)}{\max_{x \in \mathcal{X}_0} p_0(y;x)} > v$$

In the case of Bayesian binary hypothesis testing, we can show that we decide \mathcal{H}_1 if

$$\frac{\int_{x \in \mathcal{X} \setminus \mathcal{X}_0} p_1(y|x) \, dx}{\int_{x \in \mathcal{X}_0} p_0(y|x) \, dx} > v$$

Intuition: The GLRT decision rule compares the most likely model in \mathcal{H}_1 to the most likely model in \mathcal{H}_0 . The Bayesian decision rule compares the average model in \mathcal{H}_1 to the average model in \mathcal{H}_0 , using the prior probability distribution on the unknown state.

Worcester Polytechnic Institute

GLRT Example (part 1 of 4)

Suppose we get a vector observation $Y \sim \mathcal{N}(Hx, \sigma^2 I)$ in \mathbb{R}^n with σ^2 known and have two hypotheses: $\mathcal{H}_0: x = 0$ versus $\mathcal{H}_1: x \neq 0$ for $x \in \mathbb{R}^N$. We assume $H^\top H$ is invertible.

Given Y = y, we want to find the most likely x under \mathcal{H}_0 and \mathcal{H}_1 .

For the denominator of the GLRT, we compute $\max_{x \in \mathcal{X}_0} p_0(y; x)$. But $\mathcal{X}_0 = \{0\}$, so the maximization is trivial. The denominator of the GLRT is

$$\max_{x \in \mathcal{X}_0} p_0(y; x) = p_0(y; x = 0) = \frac{1}{(2\pi\sigma^2)^{n/2}} \exp\left(-\frac{y^\top y}{2\sigma^2}\right)$$

For the numerator, we compute $\max_{x\neq 0} p_1(y;x)$. Since this is a linear Gaussian model, we can use the known results for the MLE to write $\hat{x}_1 = (H^\top H)^{-1} H^\top y$. Hence

$$\max_{x \in \mathcal{X} \setminus \mathcal{X}_0} p_1(y; x) = \frac{1}{(2\pi\sigma^2)^{n/2}} \exp\left(-\frac{(y - H\hat{x}_1)^\top (y - H\hat{x}_1)}{2\sigma^2}\right)$$

GLRT Example (part 2 of 4)

The GLRT is then

$$\frac{\max_{x \in \mathcal{X} \setminus \mathcal{X}_0} p_1(y;x)}{\max_{x \in \mathcal{X}_0} p_0(y;x)} = \frac{\exp\left(-\frac{(y - H\hat{x}_1)^\top (y - H\hat{x}_1)}{2\sigma^2}\right)}{\exp\left(-\frac{y^\top y}{2\sigma^2}\right)} > v$$

with $\hat{x}_1 = (H^\top H)^{-1} H^\top y = Py$. Simplifying and taking the log of both sides, we have

$$\begin{aligned} & \frac{-1}{2\sigma^2} \left(y^\top y - 2y^\top H \hat{x}_1 + \hat{x}_1^\top H^\top H \hat{x}_1 - y^\top y \right) > v' \\ \Leftrightarrow & 2y^\top H (H^\top H)^{-1} H^\top y - y^\top H (H^\top H)^{-1} H^\top H (H^\top H)^{-1} H^\top y > v'' \\ \Leftrightarrow & y^\top H (H^\top H)^{-1} H^\top y > v'' \\ \Leftrightarrow & y^\top H (H^\top H)^{-1} H^\top y > v'' \end{aligned}$$

where we choose v'' to satisfy the false positive probability constraint.

GLRT Example (part 3 of 4)

Note that we can write H = QR where $Q \in \mathbb{R}^{N \times n}$ is a matrix with orthonormal columns and $R \in \mathbb{R}^{n \times n}$ is an invertible upper triangular matrix. This is called the (reduced) QR factorization.

Then

$$P = H(H^{\top}H)^{-1}H^{\top}$$

= $QR(R^{\top}Q^{\top}QR)^{-1}R^{\top}Q^{\top}$
= $QR(R^{\top}IR)^{-1}R^{\top}Q^{\top}$
= $QRR^{-1}(R^{\top})^{-1}R^{\top}Q^{\top}$
= QQ^{\top}

Hence our decision statistic is

$$Y^{\top}PY = Y^{\top}QQ^{\top}Y = Z^{\top}Z.$$

What is the distribution of Z under \mathcal{H}_0 ?

GLRT Example (part 4 of 4)

We have $Z = Q^{\top}Y$ with $Y \sim \mathcal{N}(0, \sigma^2 I)$ under \mathcal{H}_0 .

Clearly Z is Gaussian with $E[Z] = E[Q^{\top}Y] = 0$.

We can also compute

$$\mathbf{E}[ZZ^{\top}] = E[Q^{\top}YY^{\top}Q] = Q^{\top}(\sigma^2 I_{N\times N})Q = \sigma^2 I_{n\times n}$$

So
$$Z \sim \mathcal{N}(0, \sigma^2 I)$$
 in \mathbb{R}^n and $\frac{Z^\top Z}{\sigma^2} \sim \chi_n^2$.

Given a false positive probability constraint α , you can use the inverse CDF of the Chi-squared distribution with n degrees of freedom to find the optimum decision threshold.

For example, set $\alpha = 0.01$ and n = 10. In Matlab, you can use v = chi2inv(0.99, 10) to get v = 23.2093. Then we decide \mathcal{H}_1 if $Z^{\top}Z > v\sigma^2$.