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The Generalized Likelihood Ratio Test

We focus here on a binary composite hypothesis testing problem with
H0 : x ∈ X0 versus H1 : x ∈ X\X0.

The main idea of the GLRT is to

◮ get an observation y

◮ estimate the most likely value of x under H0 (call this x̂0)

◮ estimate the most likely value of x under H1 (call this x̂1)

and then use those estimates as “truth” so that we have a simple binary
hypothesis testing problem H0 : x = x̂0 versus H1 : x = x̂1.

You can then specify the decision rule via the standard N-P lemma for
simple binary hypothesis testing.
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Connection to Bayesian Composite Hypothesis Testing

Let pi(y;x) be the family of densities parameterized by x under hypothesis
Hi. Often we have p0(y;x) = p1(y;x), but these densities don’t have to
have the same form.

With the GLRT, we decide H1 if

maxx∈X\X0
p1(y;x)

maxx∈X0
p0(y;x)

> v

In the case of Bayesian binary hypothesis testing, we can show that we
decide H1 if

∫

x∈X\X0
p1(y|x) dx

∫

x∈X0
p0(y|x) dx

> v

Intuition: The GLRT decision rule compares the most likely model in H1

to the most likely model in H0. The Bayesian decision rule compares the
average model in H1 to the average model in H0, using the prior
probability distribution on the unknown state.
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GLRT Example (part 1 of 4)

Suppose we get a vector observation Y ∼ N (Hx, σ2I) in R
n with σ2

known and have two hypotheses: H0 : x = 0 versus H1 : x 6= 0 for
x ∈ R

N . We assume H⊤H is invertible.

Given Y = y, we want to find the most likely x under H0 and H1.

For the denominator of the GLRT, we compute maxx∈X0
p0(y;x). But

X0 = {0}, so the maximization is trivial. The denominator of the GLRT is

max
x∈X0

p0(y;x) = p0(y;x = 0) =
1

(2πσ2)n/2
exp

(

−
y⊤y

2σ2

)

For the numerator, we compute maxx 6=0 p1(y;x). Since this is a linear
Gaussian model, we can use the known results for the MLE to write
x̂1 = (H⊤H)−1H⊤y. Hence

max
x∈X\X0

p1(y;x) =
1

(2πσ2)n/2
exp

(

−
(y −Hx̂1)

⊤(y −Hx̂1)

2σ2

)
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GLRT Example (part 2 of 4)

The GLRT is then

maxx∈X\X0
p1(y;x)

maxx∈X0
p0(y;x)

=
exp

(

− (y−Hx̂1)⊤(y−Hx̂1)
2σ2

)

exp
(

−y⊤y
2σ2

) > v

with x̂1 = (H⊤H)−1H⊤y = Py. Simplifying and taking the log of both
sides, we have

−1

2σ2

(

y⊤y − 2y⊤Hx̂1 + x̂⊤1 H
⊤Hx̂1 − y⊤y

)

> v′

⇔ 2y⊤H(H⊤H)−1H⊤y − y⊤H(H⊤H)−1H⊤H(H⊤H)−1H⊤y > v′′

⇔ y⊤H(H⊤H)−1H⊤y > v′′

⇔ y⊤Py > v′′

where we choose v′′ to satisfy the false positive probability constraint.
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GLRT Example (part 3 of 4)

Note that we can write H = QR where Q ∈ R
N×n is a matrix with

orthonormal columns and R ∈ R
n×n is an invertible upper triangular

matrix. This is called the (reduced) QR factorization.

Then

P = H(H⊤H)−1H⊤

= QR(R⊤Q⊤QR)−1R⊤Q⊤

= QR(R⊤IR)−1R⊤Q⊤

= QRR−1(R⊤)−1R⊤Q⊤

= QQ⊤

Hence our decision statistic is

Y ⊤PY = Y ⊤QQ⊤Y = Z⊤Z.

What is the distribution of Z under H0?
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GLRT Example (part 4 of 4)

We have Z = Q⊤Y with Y ∼ N (0, σ2I) under H0.

Clearly Z is Gaussian with E[Z] = E[Q⊤Y ] = 0.

We can also compute

E[ZZ⊤] = E[Q⊤Y Y ⊤Q] = Q⊤(σ2IN×N )Q = σ2In×n

So Z ∼ N (0, σ2I) in R
n and Z⊤Z

σ2 ∼ χ2
n.

Given a false positive probability constraint α, you can use the inverse
CDF of the Chi-squared distribution with n degrees of freedom to find the
optimum decision threshold.

For example, set α = 0.01 and n = 10. In Matlab, you can use v =

chi2inv(0.99,10) to get v = 23.2093. Then we decide H1 if
Z⊤Z > vσ2.
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