ECE531 Screencast 12.1: Introduction to Deterministic Signal Detection with Unknown Parameters

D. Richard Brown III

Worcester Polytechnic Institute

Introduction

We now consider **parametric detection** problems for known/deterministic signals with one or more unknown parameters.

• We focus on the case of an N-sample discrete time observation $Y \in \mathcal{Y}$ with binary hypotheses

$$\begin{aligned} \mathcal{H}_0 &: \quad Y \sim p_x(y) \text{ for } x \in \mathcal{X}_0 \\ \mathcal{H}_1 &: \quad Y \sim p_x(y) \text{ for } x \in \mathcal{X}_1 \end{aligned}$$

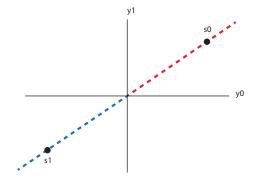
with $\mathcal{X}_0 \bigcup \mathcal{X}_1 = \mathcal{X}$ and $\mathcal{X}_0 \bigcap \mathcal{X}_1 = \emptyset$

 Our approach: Since we will have more than one state associated with one or both hypotheses, we will use our tools from composite hypothesis testing to develop good detectors.

Example 1

Suppose we have a known signal $s \in \mathbb{R}^n$ and we have a communication system that transmits either $s_0 = -s$ or $s_1 = s$. The signal arrives with unknown amplitude a > 0 and is corrupted by zero-mean AWGN with known variance σ^2 .

For n = 2, we can illustrate this situation:



Example 1 (continued)

A key step in these kinds of problems is to set them up correctly. If possible, we want to absorb the unknown parameter(s) into the state.

In this example, since $s_1 = s = -s_0$, we have

 $Y \sim \mathcal{N}(as, \sigma^2 I)$

from any state $a \in \mathcal{X}$ with a < 0 when s_0 is sent and a > 0 when s_1 is sent. If we let the state x = a, then the hypotheses can be written as

$$\begin{aligned} \mathcal{H}_0 &: \quad x < 0 \\ \mathcal{H}_1 &: \quad x > 0 \end{aligned}$$

with the state space $\mathcal{X} = \mathbb{R} \setminus 0$.

This is a composite binary hypothesis testing problem with composite null and composite alternative hypotheses.

Worcester Polytechnic Institute

Example 2

Suppose now we have a known signal $s \in \mathbb{R}^n$ and we want to detect its presence or absence. The signal arrives with unknown amplitude a > 0 and is corrupted by zero-mean AWGN with known variance σ^2 .

As before, we have

$$Y \sim \mathcal{N}(as, \sigma^2 I)$$

from any state $a \in \mathcal{X}$. In this case, we can say a = 0 when the signal is absent and a > 0 when the signal is present. If we let the state x = a, then the hypotheses can be written as

 $\mathcal{H}_0 : x = 0 \\ \mathcal{H}_1 : x > 0$

with the state space $\mathcal{X} = [0, \infty)$.

This is a composite binary hypothesis testing problem with a simple null and a composite alternative hypotheses.

Strategies for Finding Good Detectors

For these types of detection problems, we have three approaches:

- 1. N-P criterion with significance level α :
 - Our strategy: reduce the composite HT problem to a simple one.
 - Check for the existence of a UMP decision rule (check the critical region and/or monotone likelihood ratio) that maximizes P_{D,x} for all x ∈ X₁ subject to P_{fp,x} ≤ α for all x ∈ X₀.
 - ► If a UMP rule doesn't exist, we can try to find an LMP decision rule.
- 2. Bayesian decision rule:
 - Need a prior on all of the states.
 - Need a cost assignment (typically the UCA).
 - Compute commodity costs $g_i(y, \pi)$ and pick smallest.
- 3. GLRT decision rule:
 - Need to find MLE of the unknown parameter(s).
 - Plug in MLE estimates to make a simple hypothesis testing problem.
 - Suboptimal, but usually easier to compute than a Bayesian detector and usually gives good performance.