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Problem Setup

We have a finite state space X = {—1,0,+1} and get observations
Yi=x+ W,
for k=0,...,n — 1 with W ~ N(0,0%I). The hypotheses are
Ho:x € Xy ={0}
Hi:xe Xy ={-1,1}

In problem 7.1, we are first asked if a UMP decision rule exists. If not,
then we are asked to find the GLRT.

To check if a UMP decision rule exists, we just need to see if the critical
regions are the same for the simple binary hypothesis tests:

1L Ho:x=0vs Hj:x=1
2. Hop:x=0vs H 1z =-1
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UMP Decision Rule

For Ho:x =0 vs H} : z = 1, we decide H} when

—1) T (y—1
pily) &P <_(y 7 )> 2-17y—n
= T = exp T >
po(y) exp (_%) o

Hence the decision rule will be of the form 17y > v/

For Ho: x =0 vs HY : x = —1, we decide HY when
W+ " (y+1)
ny) P (_ o ) —2-1Ty—n
W (T )
pO y exp <_%) g

Hence the decision rule will be of the form 17y < /. The critical region is
changing, so a UMP decision rule doesn't exist.
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GLRT Decision Rule (part 1 of 2)

To compute the GLRT decision rule, we need to compute the MLE of =
under Hg and H;. Under the simple hypothesis Hg there is nothing to do.

Under the composite hypothesis H1, the MLE is just the value of
x € {—1,4+1} that makes the observation y more likely. So, given y, we

choose -
(y—1lz) (y — 1z)
202

T =arg max exp|—
ze{—1,+1}

which is equivalent to
T = ar min — 1z — 1z
ga:e{ L 1}(y ) (y )

—arg min y'y—2z1Ty+1"12?
ze{—-1,+1}

arg max z1"
ze{—1,+1}
which is equivalent to = sign (1Ty).
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GLRT Decision Rule (part 2 of 2)

So the GLRT decision rule decides H; if

pl(y )
>
poly)
—12) T (y—1%
exp (_(y 1 ;agy 1 ))

4

> v

_y'y
exp (~44)
& 281Ty—n>

s 1Tyl >

with v” chosen to satisfy the false positive probability constraint.
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Bayesian Decision Rule (part 1 of 3)

In Problem 7.2 we are asked to find a Bayesian decision rule (assume the UCA).

The prior probabilities are given as

mo = Prob(z = 0) = 7
1—71'()
2
1—71'()
2

Since we have a finite number of states and only two hypotheses, our Bayesian
decision rule will be of the form

go (y,m)
557 (y) = U ooem 1
0 otherwise.

m = Prob(z = —1) =

my = Prob(z = +1) =

where
N-1
gily,m) = Zci,jﬂjpj(y)
=0

is the usual “commodity cost” associated with hypothesis ;.
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Bayesian Decision Rule (part 2 of 3)

Under the UCA, we have

0 1 1
¢= [1 0 0]
hence
2 1—m
— 0
go(y,m) = Zco,jﬂjpj(y) = (p1(y) + p2(y))
=0
2
g1(y,m) = ZCLjﬂjpj(y) = mopo(y)
=0
and

goly,m) _ <1 —7T0> p1(y) + p2(y)
91(y, ) 2mo po(y)
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Bayesian Decision Rule (part 3 of 3)

Hence we decide H1 when

<1 - Wo) p1(y) + pa(y) -1
2mg Po(y)
o DA, 2m
po(y) 1 —mo
T T
exp (—%) + exp (—7(%1;05%1)) 20
= vy i
exp (— 4 ) 0
1Ty —n/2 1Ty —n/2 2
=4 exp<y72n/>+exp< an/>> o
o o 1—mg
1Ty 1Ty 2o exp (7;—/22)
& exXp| — | +exp >
o? o2 1—mp

& |1Ty| > v

which is the same form as the GLRT but v will be different.
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