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GLRT Decision Rules for Composite HT Problems

Given a composite hypothesis testing problem with unknown state x.
Recall the main idea of the GLRT:

> get an observation y
» estimate the most likely value of = under H (call this Zg)
» estimate the most likely value of z under #; (call this %)

and then form the GLRT .
p1(y; 21)

Ppo(y; o)
where v is selected to satisfy the false positive probability constraint.

>
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GLRT: Known Signal in AWGN with Unknown Variance

We have the binary hypothesis testing problem
Ho : Y =W
Hi:Y=s+W

with s € R™ known and W ~ N(0,021) with 0% unknown.

The MLE of o2 under H, is 6p° = %yTy and the MLE of 02 under H; is
G2 =2(y—s)"(y—s)

The GLRT (with 2 = ¢2) is then

1 _(y=9)"(y=s) .
maxXyex\x PLY; ) _ roi %) eXp( 251” ) = <"o2>n/2 > v
N ===

. 1 T
ma’xiBEXO po(y7x) WGXP <_2ya¢0y2>

. -2
Unfortunately, the statistics of Z = 22; depend on ¢ under H,, so the

o1
threshold v will depend on o2 to satisfy a false positive probability
constraint. This detector is not CFAR.
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GLRT: Known Signal in AWGN with Unknown Variance

Histogram of GLRT test statistic (under HO)
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GLRT for Classical Linear Model in AWGN with Unk. o2

Now consider the case when we wish to detect a known signal with
unknown parameters in AWGN with unknown variance. Suppose the
observations y € R™ are received from the classical linear model

y=Hx+w

with € RP*! containing the unknown signal parameters and
W ~ N(0,0%I) with o2 unknown.

The hypotheses are given as

Ho:z=0and 62 >0
lea;#Oanda2>O
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GLRT for Classical Linear Model in AWGN with Unk. o2

Under the conditions of the previous slide, the GLRT decides H; if

~T 17T -
- H' H
T(y) = " T

Py (I—HH H)H )y °

where &1 = (H"H)"'H "y is the MLE of = under H;. The decision statistic in this
case is CFAR and

P, = Qu(v)
Po = Qv(v)
where Qz(x f pz(t) dt is the tail probability of the random variable Z and

> U~ Fp,n,p denotes the F' distribution with p numerator degrees of freedom and
n — p denominator degrees of freedom

> V ~ F;,_,()\) denotes the non-central F distribution with p numerator degrees
of freedom, n — p denominator degrees of freedom, and non centrality parameter

z H Hz
A= ——m—
o
with = denoting the true value of the unknown signal parameters.
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GLRT for Classical Linear Model in AWGN with Unk. o2

To provide some interpretation, let's rewrite the decision statistic

n—p & H Hi
T(y) = T THYV-1HT
p y' (U-HH"H)"'H")y

n—p(H 'H)'"H'y) H HH "H)'Hy

P y'"(I-HHTH)"'HT )y
n—p y HHTH)'HTy

p y'(I-HHTH)'H )y
n-p y'Py _n-—p [Pyl

p y'(I-Py p |I(I-Py|?

where P is an orthogonal projection matrix onto the subspace of R™
spanned by the columns of H (the signal subspace) and I — P is
another orthogonal projection matrix onto the subspace of R™ orthogonal
to the subspace spanned by the range of H (the noise subspace).
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