# ECE531 Screencast 13.4: Generalized Likelihood Ratio Test Detection with Unknown AWGN Noise Variance

D. Richard Brown III

Worcester Polytechnic Institute

## GLRT Decision Rules for Composite HT Problems

Given a composite hypothesis testing problem with unknown state x. Recall the main idea of the GLRT:

- get an observation y
- estimate the most likely value of x under  $\mathcal{H}_0$  (call this  $\hat{x}_0$ )

• estimate the most likely value of x under  $\mathcal{H}_1$  (call this  $\hat{x}_1$ ) and then form the GLRT

$$\frac{p_1(y;\hat{x}_1)}{p_0(y;\hat{x}_0)} > v$$

where v is selected to satisfy the false positive probability constraint.

## GLRT: Known Signal in AWGN with Unknown Variance

We have the binary hypothesis testing problem

$$\mathcal{H}_0 : Y = W$$
  
$$\mathcal{H}_1 : Y = s + W$$

with  $s \in \mathbb{R}^n$  known and  $W \sim \mathcal{N}(0, \sigma^2 I)$  with  $\sigma^2$  unknown.

The MLE of  $\sigma^2$  under  $\mathcal{H}_0$  is  $\hat{\sigma_0}^2 = \frac{1}{n}y^\top y$  and the MLE of  $\sigma^2$  under  $\mathcal{H}_1$  is  $\hat{\sigma_1}^2 = \frac{1}{n}(y-s)^\top (y-s)$ .

The GLRT (with  $x = \sigma^2$ ) is then

$$\frac{\max_{x \in \mathcal{X} \setminus \mathcal{X}_0} p_1(y;x)}{\max_{x \in \mathcal{X}_0} p_0(y;x)} = \frac{\frac{1}{(2\pi\hat{\sigma_1}^2)^{n/2}} \exp\left(-\frac{(y-s)^\top (y-s)}{2\hat{\sigma_1}^2}\right)}{\frac{1}{(2\pi\hat{\sigma_0}^2)^{n/2}} \exp\left(-\frac{y^\top y}{2\hat{\sigma_0}^2}\right)} = \left(\frac{\hat{\sigma_0}^2}{\hat{\sigma_1}^2}\right)^{n/2} > v$$

Unfortunately, the statistics of  $Z = \frac{\hat{\sigma_0}^2}{\hat{\sigma_1}^2}$  depend on  $\sigma^2$  under  $\mathcal{H}_0$ , so the threshold v will depend on  $\sigma^2$  to satisfy a false positive probability constraint. This detector is not CFAR.

Worcester Polytechnic Institute

## GLRT: Known Signal in AWGN with Unknown Variance



Worcester Polytechnic Institute

#### GLRT for Classical Linear Model in AWGN with Unk. $\sigma^2$

Now consider the case when we wish to detect a known signal with unknown parameters in AWGN with unknown variance. Suppose the observations  $y \in \mathbb{R}^n$  are received from the classical linear model

$$y = Hx + w$$

with  $x \in \mathbb{R}^{p \times 1}$  containing the unknown signal parameters and  $W \sim \mathcal{N}(0, \sigma^2 I)$  with  $\sigma^2$  unknown.

The hypotheses are given as

$$\mathcal{H}_0: x = 0 \text{ and } \sigma^2 > 0$$
  
 $\mathcal{H}_1: x \neq 0 \text{ and } \sigma^2 > 0$ 

#### GLRT for Classical Linear Model in AWGN with Unk. $\sigma^2$

Under the conditions of the previous slide, the GLRT decides  $\mathcal{H}_1$  if

$$T(y) = \frac{n-p}{p} \frac{\hat{x}_1^\top H^\top H \hat{x}_1}{y^\top (I - H(H^\top H)^{-1} H^\top) y} > v$$

where  $\hat{x}_1 = (H^\top H)^{-1} H^\top y$  is the MLE of x under  $\mathcal{H}_1$ . The decision statistic in this case is CFAR and

$$P_{\rm fp} = Q_U(v)$$
$$P_{\rm D} = Q_V(v)$$

where  $Q_Z(x) = \int_x^\infty p_Z(t)\,dt$  is the tail probability of the random variable Z and

- ▶  $U \sim F_{p,n-p}$  denotes the F distribution with p numerator degrees of freedom and n-p denominator degrees of freedom
- $V \sim F'_{p,n-p}(\lambda)$  denotes the non-central F distribution with p numerator degrees of freedom, n p denominator degrees of freedom, and non centrality parameter

$$\lambda = \frac{x^\top H^\top H x}{\sigma^2}$$

with x denoting the true value of the unknown signal parameters.

#### GLRT for Classical Linear Model in AWGN with Unk. $\sigma^2$

To provide some interpretation, let's rewrite the decision statistic

$$\begin{split} T(y) &= \frac{n-p}{p} \frac{\hat{x}_1^\top H^\top H \hat{x}_1}{y^\top (I - H(H^\top H)^{-1} H^\top) y} \\ &= \frac{n-p}{p} \frac{((H^\top H)^{-1} H^\top y)^\top H^\top H(H^\top H)^{-1} H^\top y}{y^\top (I - H(H^\top H)^{-1} H^\top) y} \\ &= \frac{n-p}{p} \frac{y^\top H(H^\top H)^{-1} H^\top y}{y^\top (I - H(H^\top H)^{-1} H^\top) y} \\ &= \frac{n-p}{p} \frac{y^\top P y}{y^\top (I - P) y} = \frac{n-p}{p} \frac{\|Py\|^2}{\|(I - P)y\|^2} \end{split}$$

where P is an orthogonal projection matrix onto the subspace of  $\mathbb{R}^n$  spanned by the columns of H (the signal subspace) and I - P is another orthogonal projection matrix onto the subspace of  $\mathbb{R}^n$  orthogonal to the subspace spanned by the range of H (the noise subspace).