ECE531 Screencast 2.1: Introduction to the Cramer-Rao Lower Bound (CRLB)

D. Richard Brown III

Worcester Polytechnic Institute

Introduction

- ► Context: We are interested in understanding the performance of unbiased estimators under the squared error cost function.
- ▶ Squared error: Estimator variance $var(\hat{\theta}(Y))$ determines performance.
- ► The CRLB gives a lower bound on the variance of an unbiased estimator: $var(\hat{\theta}(Y)) \ge CRLB$.

Why is this important?

- ▶ If a given unbiased estimator achieves the CRLB, i.e. $var(\hat{\theta}(Y)) = CRLB$, it must be the MVU estimator.
- ▶ A good lower bound also provides a benchmark by which we can compare the performance of different estimators.

Intuition: When Can We Expect Low Variance?

Recall our unknown parameter $\theta \in \Lambda$.

Suppose our parameter space $\Lambda=\mathbb{R}$ and we get a scalar observation distributed as $p_Y(y\,;\,\theta)=\mathcal{U}(0,1).$ What can we say about the performance of a good estimator $\hat{\theta}(y)$ in this case?

Suppose now that we get a scalar observation distributed as $p_Y(y\,;\,\theta)=\mathcal{U}(\theta-\epsilon,\theta+\epsilon)$ for some small value of ϵ . What can we say about the performance of a good estimator $\hat{\theta}(y)$ in this case?

Intuition: When Can We Expect Low Variance?

- ▶ The minimum achievable variance of an estimator is somehow related to the **sensitivity** of the density $p_Y(y; \theta)$ to changes in the parameter θ .
- ▶ If the density $p_Y(y;\theta)$ is **insensitive** to the parameter θ , then we can't expect even the MVU estimator to do very well.
- ▶ If the density $p_Y(y; \theta)$ is **sensitive** to changes in the parameter θ , then the achievable performance (minimum variance) should be better.
- Our notion of sensitivity:
 - ▶ Hold *y* fixed.
 - ▶ How "steep" is $p_Y(y; \theta)$ as we vary the parameter θ ?
 - ▶ This steepness should somehow be averaged over the observations.
- ► Terminology: When we discuss $p_Y(y;\theta)$ with y fixed and θ as a variable, we call this a "likelihood function". It is not a valid pdf in θ . Recall that θ is not a random variable.

Example: Rayleigh Family $p_Y(y\,;\, heta)=rac{y}{\sigma^2}e^{rac{-y^2}{\sigma^2}}$ with $heta=\sigma$

