ECE531 Screencast 3.4: Sufficiency and Completeness

D. Richard Brown III

Worcester Polytechnic Institute

Sufficiency

Definition

 $T: \mathcal{Y} \mapsto \Delta$ is a **sufficient statistic** for the family of parameterized pdfs $\{p_Y(y; \theta); \theta \in \Lambda\}$ if the distribution of the random observation conditioned on T(Y), i.e. $p_Y(y | T(Y) = t; \theta)$, does not depend on θ for all $\theta \in \Lambda$ and all $t \in \Delta$.

Intuitively, a sufficient statistic summarizes the information contained in the observation about the unknown parameter. Knowing T(y) is as good as knowing the full observation y when we wish to estimate θ .

Neyman-Fisher Factorization Theorem

Theorem (Fisher 1920, Neyman 1935)

A statistic T is sufficient for θ if and only if there exist functions g_{θ} and h such that the parameterized pdf of the observation can be factored as

$$p_Y(y; \theta) = g_\theta(T(y))h(y)$$

for all $y \in \mathcal{Y}$ and all $\theta \in \Lambda$.

The proof of this theorem is in your textbook.

Note that h(y) can't be a function of θ and $g_{\theta}(T(y))$ must only be a function of θ and T(y).

Example: Neyman-Fisher Factorization Theorem

Suppose $\theta \in \mathbb{R}$ and

$$p_Y(y;\theta) = \frac{1}{(2\pi\sigma^2)^{n/2}} \exp\left\{\frac{-1}{2\sigma^2} \sum_{k=0}^{n-1} (y_k - \theta)^2\right\}.$$

Let $T(y) = \frac{1}{n} \sum_{k=0}^{n-1} y_k$. Let's try the N-F factorization...

$$p_Y(y;\theta) = \frac{1}{(2\pi\sigma^2)^{n/2}} \exp\left\{\frac{-n}{2\sigma^2} \left(\frac{1}{n} \sum_{k=0}^{n-1} y_k^2 - 2\theta y_k + \theta^2\right)\right\}$$
$$= \underbrace{\frac{1}{(2\pi\sigma^2)^{n/2}} \exp\left\{\frac{-n}{2\sigma^2} \left(\theta^2 - 2\theta T(y)\right)\right\}}_{g_{\theta}(T(y))} \underbrace{\exp\left\{\frac{-1}{2\sigma^2} \sum_{k=0}^{n-1} y_k^2\right\}}_{h(y)}$$

Hence T(y) is a sufficient statistic.

Completeness of a Family of PDFs

Definition

The family of pdfs $\{p_Y(y; \theta); \theta \in \Lambda\}$ is said to be complete if the condition $\mathbb{E}[f(Y)] = 0$ for all θ in Λ implies that $\operatorname{Prob}[f(Y) = 0] = 1$ for all θ in Λ . Note that $f: \mathcal{Y} \mapsto \mathbb{R}$ can be any function.

To get some intuition, consider the case where $\mathcal{Y} = \{y_0, \ldots, y_{L-1}\}$ is a finite set. Then

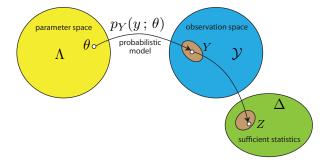
$$E[f(Y)] = \sum_{\ell=0}^{L-1} f(y_{\ell}) \operatorname{Prob}(Y = y_{\ell}; \theta)$$
$$= f^{\top}(y) P(\theta)$$

For a fixed θ it is certainly possible to find a non-zero f such that E[f(Y)] = 0. But we have to satisfy this condition for all $\theta \in \Lambda$, i.e. we need a vector f(y) that is **orthogonal to the all members of the family** of vectors $\{P(\theta); \theta \in \Lambda\}$. If the only such vector that satisfies the condition E[f(Y)] = 0 for all $\theta \in \Lambda$ is $f(y_0) = \cdots = f(y_{L-1}) = 0$, then the family $\{P; \theta \in \Lambda\}$ is complete.

Complete Sufficient Statistics

Definition

Suppose that T is a sufficient statistic for the family of pdfs $\{p_Y(y; \theta); \theta \in \Lambda\}$. Let $p_Z(z; \theta)$ denote the distribution of Z = T(Y) when the parameter is θ . If the family of pdfs $\{p_Z(z; \theta); \theta \in \Lambda\}$ is complete, then T is said to be a complete sufficient statistic for the family $\{p_Y(y; \theta); \theta \in \Lambda\}$.



One-Parameter Exponential Families

Theorem

Suppose $\mathcal{Y} = \mathbb{R}^n$, $\Lambda \subset \mathbb{R}$, and

$$p_Y(y; \theta) = a(\theta) \exp \{q(\theta)T(y)\} h(y)$$

where a, T, q, and h are all real-valued functions. Then T(y) is a complete sufficient statistic for the family $\{p_Y(y; \theta); \theta \in \Lambda\}$.

For the proof, see Poor pp. 165-166 and/or Lehmann 1986.