ECE531 Screencast 5.1: Introduction to Bayesian Estimation

D. Richard Brown III

Worcester Polytechnic Institute

Parameter Estimation Approaches

Two fundamentally different approaches to parameter estimation:

- 1. **Non-random (Classical)**: The parameter of interest θ is considered to be a deterministic but unknown constant. It does not possess any known prior distribution.
- 2. **Bayesian**: The parameter of interest θ is a realization of a random variable Θ with a known prior density $\pi(\theta)$.

Remarks:

- ▶ The performance of classical parameter estimators is usually a function of θ .
- ▶ The Bayesian estimator gives the best possible estimate "on the average", where the risk/cost is averaged over the joint pdf $p_{Y,\Theta}(y,\theta)$. Performance is not a function of θ .
- ▶ If you have prior knowledge, you should use it. Prior knowledge will lead to a more accurate estimator.

Cost Assignments and Conditional Risk

- ▶ Cost assignment: $C_{\theta}(\hat{\theta}): \Lambda \times \Lambda \mapsto \mathbb{R}$ is the cost of the parameter estimate $\hat{\theta} \in \Lambda$ given the true parameter $\theta \in \Lambda$. Let $\epsilon := \hat{\theta}(y) \theta$. Many cost assignments can be written as $C_{\theta}(\hat{\theta}) = C(\epsilon)$. Recall:
 - Squared error: $C_{\theta}(\hat{\theta}) = \epsilon^2$.
 - Absolute error: $C_{\theta}(\hat{\theta}) = |\epsilon|$.
 - Uniform error ("hit or miss"):

$$C_{\theta}(\hat{\theta}) \quad = \quad \begin{cases} 0 & |\epsilon| \leq \frac{\Delta}{2} \\ 1 & \text{otherwise} \end{cases}$$

▶ Conditional risk of estimator $\hat{\theta}(y)$ when the true parameter is θ :

$$\begin{split} R_{\theta}(\hat{\theta}) &:= & \operatorname{E}\left[C_{\theta}(\hat{\theta}(Y)) \,|\, \Theta = \theta\right] \\ &= & \int_{\mathcal{Y}} C_{\theta}(\hat{\theta}(y)) p_{Y|\Theta}(y|\Theta = \theta) \, dy \end{split}$$

The Bayesian Philosophy

We assume that the unknown parameter(s) are random with a known prior distribution $\Theta \sim \pi(\theta)$. The average/Bayes risk of estimator $\hat{\theta}(y)$ is then

$$\begin{split} r(\hat{\theta}) &= & \mathrm{E}[R_{\Theta}(\hat{\theta})] \\ &= & \int_{\Lambda} R_{\theta}(\hat{\theta}) \pi(\theta) \, d\theta \\ &= & \int_{\Lambda} \int_{\mathcal{Y}} C_{\theta}(\hat{\theta}(y)) p_{\theta}(y) \pi(\theta) \, dy \, d\theta \\ &= & \int_{\mathcal{Y}} \int_{\Lambda} C_{\theta}(\hat{\theta}(y)) p_{\theta}(y) \pi(\theta) \, d\theta \, dy \end{split}$$

where $p_{\theta}(y)$ is shorthand notation for the conditional distribution $p_{Y|\Theta}(y|\Theta=\theta).$

The goal here is to find an estimator $\hat{\theta}(y)$ that minimizes the Bayes risk.

Posterior Distribution

Let's use Bayes' rule to rewrite our conditional density

$$p_{\theta}(y) := p_{Y|\Theta}(y|\Theta = \theta) = \frac{p_{Y,\Theta}(y,\theta)}{p_{\Theta}(\theta)} = \frac{p_{\Theta|Y}(\theta \mid Y = y)p_{Y}(y)}{p_{\Theta}(\theta)} = \frac{\pi_{y}(\theta)p(y)}{\pi(\theta)}$$

Hence, the Bayes risk can be written as

$$r(\hat{\theta}) = \int_{\mathcal{Y}} \int_{\Lambda} C_{\theta}(\hat{\theta}(y)) p_{\theta}(y) \pi(\theta) d\theta dy$$

$$= \int_{\mathcal{Y}} \underbrace{\int_{\Lambda} C_{\theta}(\hat{\theta}(y)) \pi_{y}(\theta) d\theta}_{\Lambda} \qquad p(y) dy$$

posterior cost of estimator $\hat{\theta}(y)$ when Y=y

For purposes of estimation, we can think of y as fixed. The Bayes estimate of the true parameter θ can be found by specifying an estimator (a function of y) that minimizes this posterior cost for each $y \in \mathcal{Y}$.

Minimizing the Bayes Risk

We want to minimize

$$r(\hat{\theta}) = \int_{\mathcal{Y}} \underbrace{\int_{\Lambda} C_{\theta}(\hat{\theta}(y)) \pi_{y}(\theta) \, d\theta}_{\text{posterior cost of estimator } \hat{\theta}(y) \text{ when } Y = y} p(y) \, dy.$$

To do this, we can fix y and solve the minimization problem

$$\hat{\theta}_{\mathsf{opt}}(y) = \arg\min_{g(\cdot)} \int_{\Lambda} C_{\theta}(g(y)) \pi_{y}(\theta) d\theta$$
$$= \arg\min_{g(\cdot)} \mathrm{E}[C_{\Theta}(g(y)) | Y = y]$$

for each $y \in \mathcal{Y}$. The solution, of course, depends on our choice of $C_{\theta}(\cdot)$.