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Minimum Mean Squared Error with Scalar Parameter

Squared error cost assignment: CΘ(g(y)) = (g(y)−Θ)2.

We want to minimize the posterior cost

θ̂opt(y) = argmin
g(·)

E[CΘ(g(y)) |Y = y] = argmin
g(·)

E[(g(y) −Θ)2 |Y = y]

Note that y is fixed. Hence g(y) = u is also fixed and

θ̂mmse(y) = argmin
g(·)

E[(g(y) −Θ)2 |Y = y]

= argmin
u

u2 − 2uE[Θ |Y = y] + E[Θ2 |Y = y]

We can find the minimum by taking a derivative with respect to u and

setting it equal to zero...

∂

∂u

{

u2 − 2uE[Θ |Y = y] + E[Θ2 |Y = y]
}

= 2u− 2E[Θ |Y = y] = 0

hence θ̂mmse(y) = E[Θ |Y = y]. The MMSE estimator is just the

conditional mean of the random parameter Θ given the observation Y = y.
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Example: Estimation of a Constant in White Noise

Suppose we observe

Yk = Θ+Wk k = 0, . . . , n − 1

where W ∼ N (0, σ2I) and Θ ∼ N (µ, v2). Note that Θ is a scalar

parameter.

Note that v2 is a measure of the accuracy of our prior knowledge. If v2 is

small, we know Θ accurately without any observations.

Solution steps:

1. Use the observation model to determine the conditional distribution

pθ(y).

2. Use Bayes’ rule to determine the posterior distribution πy(θ).

3. Compute the conditional mean θ̂mmse(y) = E[Θ |Y = y].

See Example 10.1 in your textbook for the details...
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Example: Estimation of a Constant in White Noise

θ̂mmse(y) = E[Θ |Y = y] =
v2

σ2nȳ + µ

v2

σ2n+ 1

MMSE = E [var[Θ |Y = y]] =
v2

v2

σ2n+ 1

where ȳ := 1
n

∑n−1
k=0 yk. Remarks:

◮ When n = 0, the MMSE estimate θ̂ = µ and the MMSE is simply v2.

◮ Note that MMSE is strictly decreasing in n as long as v > 0.

◮ The effect of the prior on θ̂mmse also becomes less important with

more samples. In the limit

lim
n→∞

θ̂mmse = ȳ and lim
n→∞

MMSE = 0
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Minimum Mean Squared Error with Vector Parameter

Squared error cost assignment: CΘ(g(y)) = ‖g(y)−Θ‖22.

Note that y is fixed. Hence g(y) = u is also fixed and

θ̂mmse(y) = argmin
g(·)

E[‖g(y) −Θ‖22 |Y = y]

= argmin
u

u⊤u− 2u⊤E[Θ |Y = y] + E[Θ⊤Θ |Y = y]

How do we solve this sort of problem? We can find the minimum by

taking the gradient with respect to u and setting it equal to zero...

∇u

{

u⊤u− 2u⊤E[Θ |Y = y] + E[Θ⊤Θ |Y = y]
}

= 2u− 2E[Θ |Y = y]

hence

2u = E[2Θ |Y = y] ⇔ u = E[Θ |Y = y]

and we can conclude that θ̂mmse(y) = E[Θ |Y = y].
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Performance of Bayesian MMSE Estimator

MMSE = E
[

‖Θ− θ̂mmse(Y )‖22

]

where the expectation is evaluated with respect to the joint pdf pY,Θ(y, θ).

MMSE =

∫ ∫

‖θ − E[Θ |Y = y]‖22 pY,Θ(y, θ) dy dθ

=

∫ ∫

‖θ − E[Θ |Y = y]‖22 πy(θ) dθ p(y) dy

=

∫ ∫

∑

i

(θi − E[Θi |Y = y])2 πy(θ) dθ p(y) dy

=

∫

∑

i

var(Θi |Y = y) p(y) dy

=

∫

trace {cov(Θ |Y = y)} p(y) dy

where trace(·) is the sum of the diagonal elements of a matrix.
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