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Bayesian Estimation for the Linear Gaussian Model

Recall the linear Gaussian model

Y = HΘ+W

where the observation Y ∈ R
n, the “mixing matrix” H ∈ R

n×m is known,
the unknown parameter vector Θ ∈ R

m is distributed as N (µΘ,ΣΘ), and
the unknown noise vector W ∈ R

n is distributed as N (0,ΣW ).

Unless otherwise specified, we always assume the noise and the unknown
parameters are independent of each other.

What are the Bayesian MMSE/MMAE/MAP estimators in this case?
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Linear Gaussian Model: Posterior Distribution Analysis

To develop an expression for the posterior distribution πy(θ), we first note

that πy(θ) =
pY,Θ(y,θ)
pY (y) . To find the joint distribution pY,Θ(y, θ) let

Z =

[

Y

Θ

]

=

[

H I

I 0

] [

Θ
W

]

Since Θ and W are independent of each other and each is Gaussian, they
are jointly Gaussian. Furthermore, since Z is a linear transformation of a
jointly Gaussian random vector, it too is jointly Gaussian.

To fully characterize Z ∈ N (µZ ,ΣZ), we just need its mean and
covariance:

µZ := E[Z] =

[

HµΘ

µΘ

]

ΣZ := cov[Z] =

[

HΣΘH
⊤ +ΣW HΣΘ

ΣΘH
⊤ ΣΘ

]
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Linear Gaussian Model: Posterior Distribution Analysis

To compute the posterior, we can write

πy(θ) =
pZ(z)

pY (y)
=

1
(2π)(m+n)/2|ΣZ |1/2

exp
{

−(z−µZ)⊤Σ−1
Z (z−µZ )

2

}

1
(2π)n/2|ΣY |1/2

exp
{

−(y−µY )⊤Σ−1
Y (y−µY )

2

}

To simplify the terms outside of the exponentials, note that

ΣZ := cov[Z] =

[

HΣΘH
⊤ +ΣW HΣΘ

ΣΘH
⊤ ΣΘ

]

=

[

ΣY ΣY,Θ

ΣΘ,Y ΣΘ

]

The determinant of a partitioned matrix P =

[

A B

C D

]

can be written as

|P | = |A| · |D − CA−1B| if A is invertible. Covariance matrices are
invertible, hence the terms outside the exponentials can be simplified to

1
(2π)(m+n)/2|ΣZ |1/2

1
(2π)n/2|ΣY |1/2

=
1

(2π)m/2|ΣΘ − ΣΘ,YΣ
−1
Y ΣY,Θ|1/2
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Linear Gaussian Model: Posterior Distribution Analysis

To simplify the terms inside the exponentials, we can use a matrix
inversion formula for partitioned matrices (A must be invertible)

[

A B

C D

]−1

=

[

(A−BD−1C)−1 −A−1B(D − CA−1B)−1

−(D − CA−1B)−1CA−1 (D − CA−1B)−1

]

and the matrix inversion lemma

(A−BD−1C)−1 = A−1 +A−1B(D − CA−1B)−1CA−1.

Skipping all the algebraic details, we can write

exp
{

−(z−µZ )⊤Σ−1
Z (z−µZ)

2

}

exp
{

−(y−µY )⊤Σ−1
Y (y−µY )

2

} = exp

{

−(θ − α(y))⊤Σ−1(θ − α(y))

2

}

where α(y) = µΘ +ΣΘ,YΣ
−1
Y (y − µY ) and Σ = ΣΘ − ΣΘ,YΣ

−1
Y ΣY,Θ.
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Linear Gaussian Model: Posterior Distribution Analysis

Putting it all together, we have the posterior distribution

πy(θ) =
1

(2π)m/2|Σ|1/2
exp

{

−(θ − α(y))⊤Σ−1(θ − α(y))

2

}

where α(y) = µΘ +ΣΘ,YΣ
−1
Y (y − µY ) and Σ = ΣΘ −ΣΘ,YΣ

−1
Y ΣY,Θ with

ΣΘ,Y = cov(Θ, Y ) = E
[

(Θ− µΘ)(HΘ +W −HµΘ)
⊤
]

= ΣΘH
⊤

ΣY,Θ = Σ⊤
Θ,Y = HΣΘ

ΣY = cov(Y, Y ) = HΣΘH
⊤ +ΣW

µY = E[HΘ+W ] = HµΘ

What can we say about the posterior distribution of the random
parameter Θ conditioned on the observation Y = y?
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Linear Gaussian Model: Bayesian Estimators

Lemma

In the linear Gaussian model, the parameter vector Θ conditioned on the

observation Y = y is jointly Gaussian distributed with

E[Θ |Y = y] = µΘ +ΣΘH
⊤
(

HΣΘH
⊤ +ΣW

)−1
(y −HµΘ)

cov[Θ |Y = y] = ΣΘ − ΣΘH
⊤
(

HΣΘH
⊤ +ΣW

)−1
HΣΘ

Corollary

In the linear Gaussian model

θ̂mmse(y) = θ̂mmae(y) = θ̂map(y)
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Linear Gaussian Model: Bayesian Estimator Remarks

◮ All of the estimators are linear (actually affine) in the observation y.

◮ Recall that the performance of the Bayesian MMSE estimator is

MMSE = E
[

‖Θ − θ̂mmse(Y )‖22

]

=

∫

trace {cov(Θ |Y = y)} p(y) dy.

In the linear Gaussian model, we see that cov[Θ |Y = y] does not
depend on y. Hence, we can move the trace outside of the integral
and write the MMSE as

MMSE = trace {cov[Θ |Y = y]}

∫

p(y) dy

= trace {ΣΘ} − trace

{

ΣΘH
⊤
(

HΣΘH
⊤ +ΣW

)−1
HΣΘ

}

.
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