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Bayesian Estimation for the Linear Gaussian Model

Recall the linear Gaussian model
Y = HO+W

where the observation Y € R™, the “mixing matrix” H € R™ ™ is known,
the unknown parameter vector © € R™ is distributed as N'(uo, Xo), and
the unknown noise vector W € R" is distributed as N (0, Xy ).

Unless otherwise specified, we always assume the noise and the unknown
parameters are independent of each other.

What are the Bayesian MMSE/MMAE/MAP estimators in this case?
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Linear Gaussian Model: Posterior Distribution Analysis

To develop an expression for the posterior distribution 7, (6), we first note
that m,(0) = pv.oWh) T4 find the joint distribution py.g(y,0) let

py (y)
7 Y| |H I||©
el | oW
Since © and W are independent of each other and each is Gaussian, they

are jointly Gaussian. Furthermore, since Z is a linear transformation of a
jointly Gaussian random vector, it too is jointly Gaussian.

To fully characterize Z € N'(uuz,%7), we just need its mean and
covariance:

Hpe
= E|Z| =
nz = bl = ||
- _ [HXeH" +%y HYe
Yz = cov[Z]= [ SoHT SR
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Linear Gaussian Model: Posterior Distribution Analysis

To compute the posterior, we can write

1 —(z—pz) "3, (z—pz)
my(0) = pz(2) _ oIS, eXp{ B }

Copyl(y) {—(y—wﬁ?;l(y—w)}

1
(2#)"/2|Ey\1/2 exp
To simplify the terms outside of the exponentials, note that

o [HYSeH" +Zw HYe| [%y Zyve
Yy = cov[Z]—[ S HT Yo |~ |Sey So

: . . A
The determinant of a partitioned matrix P = [C D

|P| = |A|-|D — CA'BJ if Ais invertible. Covariance matrices are
invertible, hence the terms outside the exponentials can be simplified to
1

] can be written as

@mmI2S, 172 1
1 o 2 _ -1 1/2
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Linear Gaussian Model: Posterior Distribution Analysis

To simplify the terms inside the exponentials, we can use a matrix
inversion formula for partitioned matrices (A must be invertible)

A BlT" (A— BD1C)~! —A"1B(D — CA~1B)~1
c D| = |-(D-cA'B)"lcA! (D - CA~'B)~

and the matrix inversion lemma
(A-BD7'C)y'=A'+ A 'B(D-cA™'B)"lcA™L.
Skipping all the algebraic details, we can write

—(2=pz) "2, (2—pz)
e {ZEHEEE) [0 aG) TS0 - aly)
{ —(y—py) TSy (y—py) } 2
2

exp

where a(y) = po + Loy Sy (y — py) and = =Yg — Yoy 2y Eye.
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Linear Gaussian Model: Posterior Distribution Analysis

Putting it all together, we have the posterior distribution

_ 1 —(0—a(y) 30— aly)
0= G P z |

where a(y) = po + Zoy Sy (y — py) and £ =Yg — Yoy Xy Eye with

Yoy =cov(0,Y) = E [(e — p16)(HO + W — H,L@)T] —SoH
Sye =26y = HXe

Sy =cov(Y,Y) = HYgH " + Sy

py =E[HO + W] = Hpe

What can we say about the posterior distribution of the random
parameter © conditioned on the observation Y = y?
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Linear Gaussian Model: Bayesian Estimators

Lemma

In the linear Gaussian model, the parameter vector © conditioned on the
observation Y = y is jointly Gaussian distributed with

EO]Y =y]

—1
po +YoH  (HSoH™ +%w)  (y— Hue)

~1
cov[®|Y =y = To-—SeH' (HZ@HT + EW> HSe

Corollary

In the linear Gaussian model

Hmmse(y) = émmae(y) = émap(y)
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Linear Gaussian Model: Bayesian Estimator Remarks

» All of the estimators are linear (actually affine) in the observation y.

» Recall that the performance of the Bayesian MMSE estimator is
MMSE = E [[© — fmmse(¥) 3]
= /trace {cov(®©|Y =y)} p(y) dy.
In the linear Gaussian model, we see that cov[© | Y = y| does not
depend on y. Hence, we can move the trace outside of the integral
and write the MMSE as
MMSE = trace {cov[® |Y =y }/

-1
= trace {Xg} — trace {ZQHT Hz@HT + ZW> HZ@} .
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